Now showing 1 - 10 of 41
  • Publication
    Numerical investigation into cleanability of support structures produced by powder bed fusion technology
    ( 2022)
    Campana, Giampaolo
    ;
    ;
    Mele, Mattia
    ;
    Raffaelli, Luca
    ;
    Bergmann, André
    ;
    ;
    Purpose: Support structures used in laser powder bed fusion are often difficult to clean from unsintered powder at the end of the process. This issue can be significantly reduced through a proper design of these auxiliary structures. This paper aims to investigate preliminary the airflow within differently oriented support structures and to provide design guidelines to enhance their cleanability, especially the depowdering of them. Design/methodology/approach: This study investigates the cleanability of support structures in powder bed fusion technology. Digital models of cleaning operations were designed through computer-aided engineering systems. Simulations of the airflow running into the powder entrapped within the thin walls of auxiliary supports were implemented by computational fluid dynamics. This approach was applied to a set of randomly generated geometrical configurations to determine the air turbulence intensity depending on their design. Findings: The resul ts, which are based on the assumption that a relationship exists between turbulence and powder removal effectiveness, demonstrated that the maximum cleanability is obtainable through specific relative rotations between consecutive support structures. Furthermore, it was possible to highlight the considerable influence of the auxiliary structures next to the fluid inlet. These relevant findings establish optimal design rules for the cleanability of parts manufactured by powder bed fusion processes. Originality/value: This study presents a preliminary investigation into the cleanability of support structures in laser powder bed fusion, which has not been addressed by previous literature. The results allow for a better understanding of the fluid dynamics during cleaning operations. New guidelines to enhance the cleanability of support structures are provided based on the results of simulations.
  • Publication
    Simulation and compensation of the thermal behaviour of industrial robots
    Industrial robot systems offer a flexible, adaptable basis due to their kinematics and their mobility. An influencing variable, which is particularly relevant for processes with long process times tP, is the thermal heating and the associated thermal drift ÎAPt of the tool center point. The maximum deviation from the actual nominal position can reach up to ÎAPt = 1.5 mm. In the investigations, a simulation model for an industrial robot was created and the thermal behaviour was mapped. With this model, the thermal error ÎAPt within the working area can be determined as a function of the current position X and temperature Ï. These data can be used for a targeted correction of the robot path. With the correction by the compensation model the amount of drift for real milling processes could be reduced to a value of ÎAPt = 0.042 mm. The results can help to reduce the influence of thermal heating and the associated thermal drift ÎAPt of the TCP without using cost-intens ive measures with additional hardware and software on external computers for compensating the errors.
  • Publication
    Additive manufacturing of precision cemented carbide parts
    ( 2021) ; ;
    Lahoda, Christian
    ;
    Hocke, Toni
    ;
    Cemented carbide parts are commonly used as wear resistance components in a broad range of industry, e.g. for forming, mould making and matrices. At state of the art the machining of precision cemented carbide components by milling is strongly limited due to excessive tool wear and long machining times. Promising approaches for precision machining of cemented carbide components are dedicated cutting tool coatings, new cutting materials like binderless polycrystalline diamond and ultrasonic-assisted machining. Nevertheless, for all these approaches the components need to be machined of monolithic materials. The new approach addresses an innovative manufacturing process chain composed of near net shape Additive Manufacturing followed by a precision finishing process. Within this investigations for the manufacturing of precision cemented carbide parts, cemented carbide with a cobalt content of 17 % and a grain size in a range of 23 µm ⤠gs ⤠40 µm were used. As Addit ive Manufacturing technology laser powder bed fusion was used. Diamond slide burnishing and immersed tumbling were investigated as finishing technologies. Based on the investigations, a dedicated process chain for the manufacturing of precision cemented carbide parts could be realised. The findings show that the developed process chain composed of near net shape Additive Manufacturing and the finishing process diamond slide burnishing enables the manufacturing of precision cemented carbide parts with a geometrical accuracy of ag ⤠10 µm. Due to the finishing process the initial surface roughness after Additive Manufacturing could reduce by Ra = 89 %.
  • Publication
    Particle contact conditions for cutting edge preparation of micro-milling tools by the immersed tumbling process
    For increasing tool life and cutting length of micro-milling tools the cutting edge preparation was successfully established. Using the immersed tumbling process, a reproducible cutting edge preparation with constant cutting edge radii as well as low chipping of the cutting edges can be realised. For a profound understanding of the preparation process and the process mechanisms further knowledge about the particle interactions with cutting tools as well as the particle flow mechanisms needs to be obtained. In this investigation the preparation process of micro-milling tools was analysed and the contact-mechanisms as well as the resulting pressures were investigated by simulation studies. Using the discrete element method (DEM) with the software ROCKY DEM from the company ESSS, Florianópolis, Brasil, the immersed tumbling process could be modelled and particle contacts, particle traces as well as particle interactions with the micro-milling tool can be visualized. Especially the particle-tool interactions were more accurately investigated by analysing the stresses and particles shear work as well as correlations between these parameters to prove the comparability between the process simulation and the real preparation process.
  • Publication
    Agiles Modellieren von Servicetätigkeiten
    ( 2021) ;
    Bösing, Manuel
    ;
    ;
    Kirsch, Lucas
    ;
    ;
    Emmerling, Roman
    Kontextsensitive Assistenzsysteme bieten ein großes Potenzial zur Optimierung von Arbeitsabläufen. Durch die Einbindung Digitaler Zwillinge können unmittelbar Kontextinformationen zur Verfügung gestellt werden, wobei die Modellierung der Arbeitsabläufe derzeit wenig standardisiert ist. Die in diesem Beitrag vorgestellte Lösung zeigt eine interaktive Software-Applikation für kontextsensitive Assistenzsysteme in Kombination mit Prozesspatterns für die Modellierung von Servicefällen.
  • Publication
    Cutting edge preparation of monolithic ceramic milling tools
    Due to international competition, continuous increases in productivity, product quality and reduction of production costs are required. Especially, the development of milling tools made of innovative cutting materials and application-specific tool geometries for the machining of brittle materials are in focus to overcome these challenges. One approach to improve the performance and the tool behaviour concerning milling of graphite is the use of monolithic ceramic milling tools. Unfortunately, the high brittleness of the ceramic leads to breakouts on the cutting edge during the grinding process. This results in an increased maximum chipping of the cutting edge, which has a significant influence on the milling process. To improve the breakout behaviour, a cutting edge preparation with the immersed tumbling process was applied. To enable a process reliable cutting edge preparation, a suitable lapping medium, the influence of the processing time as well as the depth of imme rsion were investigated. Besides the maximum chipping of the cutting edge, the rounded cutting edge radius was also analysed. The results show that a process reliable cutting edge preparation of monolithic ceramic milling tools with a maximum chipping of the cutting edge RS,max ⤠3 µm and a rounded cutting edge radius of rβ ⤠7 µm could be realised. In future investigations, the experimental applicability of monolithic ceramic milling tools will be proved.
  • Publication
    Evaluation of carbon fiber reinforced polymer – CFRP – machining by applying industrial robots
    ( 2021)
    Grisol De Melo, Ever
    ;
    Santos Silva, Jéssica Christina dos
    ;
    Klein, Tiago Borsoi
    ;
    ; ;
    Oliveira Gomes, Jefferson de
    Carbon fiber reinforced polymer (CFRP) is widely used in high-tech industries because of its interesting characteristics and properties. This material presents good strength and stiffness, relatively low density, high damping ability, good dimensional stability, and good corrosion resistance. However, the machinability of composite materials is complex because of the matrix/fiber interface, being a challenging machining material. The CFRP milling process is still necessary to meet dimensional tolerances, the manufacture of difficult-to-mold features like pockets or complexes advance surfaces, finish the edges of laminated composites, or drill holes for the assembly of the components. Besides, the demand for low-cost, reconfigurable manufacturing systems of the industry demonstrates that the application of industrial robots (IRs) in the CFRP milling process becomes an alternative for providing automation and flexibility. Therefore, the objective of this work is to evaluate the performance of the low payload IR KUKA KR60 HA in a milling experiment of CFRP, which indicates its potential application as an alternative to milling process. Furthermore, the influence of the cutting tool geometry as well as the cutting parameters in the machining behavior with IRs is evaluated.
  • Publication
    Holistic Concept towards a Reference Architecture Model for Predictive Maintenance
    ( 2021) ; ;
    Koutrakis, Nikolaos-Stefanos
    In the era of digital transformation of factories, one of the most challenging applications of the Industrial Internet of Things (IIoT) is predictive maintenance. This paper presents a holistic concept for predictive maintenance together with a reference architecture that includes data acquisition on the sensor level, edge computing and digital twin applications. For that purpose, condition-based maintenance, lifecycle monitoring and digital assistance systems are integrated to develop application-specific digital twins based on the proposed architecture, integrating heterogenous data sources in order to enhance the accuracy of the machine learning models. The concept is illustrated through an experimental use case.
  • Publication
    Sensor integration in hybrid additive manufactured parts for real-time monitoring in turbine operations
    Real-time monitoring of operation conditions such as tempeatures and vibrations enables efficiency enhancement for maintenance tasks. In energy industry monitoring of critical components such as turbine blades is essential for the operation safety. But the effective recording of critical process data is a challenging task due to the extreme operating conditions. With a hybrid processing approach combining two additive manufacturing technologies new classes of self-monitoring components become possible allowing data acquisition directly inside the component. Using the example of a turbine blade, the hybrid process chain is described. The turbine blade blank is produced via Laser Powder Bed Fusion (L-PBF) with channels for the integration of high temperature sensors. After integration cavities were closed by Laser Directed Energy Deposition (L-DED) followed by classical milling operations for part finishing. The data acquisition is integrated in state-of-the-art product l ifecycle monitoring (PLM) software to create a digital twin. Evaluation shows that temperature could be successfully monitored at conditions of Π= 550°C.