Options
2021
Conference Paper
Title
Simulation and compensation of the thermal behaviour of industrial robots
Abstract
Industrial robot systems offer a flexible, adaptable basis due to their kinematics and their mobility. An influencing variable, which is particularly relevant for processes with long process times tP, is the thermal heating and the associated thermal drift ÎAPt of the tool center point. The maximum deviation from the actual nominal position can reach up to ÎAPt = 1.5 mm. In the investigations, a simulation model for an industrial robot was created and the thermal behaviour was mapped. With this model, the thermal error ÎAPt within the working area can be determined as a function of the current position X and temperature Ï. These data can be used for a targeted correction of the robot path. With the correction by the compensation model the amount of drift for real milling processes could be reduced to a value of ÎAPt = 0.042 mm. The results can help to reduce the influence of thermal heating and the associated thermal drift ÎAPt of the TCP without using cost-intens ive measures with additional hardware and software on external computers for compensating the errors.