• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Modeling Nickel-Silicidation Using Physics-Informed Machine Learning
 
  • Details
  • Full
Options
September 24, 2025
Conference Paper
Title

Modeling Nickel-Silicidation Using Physics-Informed Machine Learning

Abstract
We simulate nickel silicidation in one and two space dimensions via physics-informed machine learning. Our machine learning models are solely trained on the governing physical laws in the form of a reaction-diffusion system, without requiring measurement or simulation data. In 1D, our model yields accurate predictions across a parametric temperature range. The 2D process is well approximated away from irregular domain features. Compared to classical state of the art simulations, our models achieve speedups of three orders of magnitude. We further discuss potential extensions to the approach, including the incorporation of measurement data for calibration purposes and enabling broader applicability to process optimization tasks.
Author(s)
Straub, Christopher  orcid-logo
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB  
Mundinar, Simon  orcid-logo
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB  
Klonnek, Jessica  orcid-logo
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB  
Pixius, Christophe  orcid-logo
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB  
Roßkopf, Andreas  
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB  
Mainwork
International Conference on Simulation of Semiconductor Processes and Devices, SISPAD 2025  
Project(s)
Explainable, AI-based simulation using Physics-Informed Neural Networks (PINNs)
Funder
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.  
Conference
International Conference on Simulation of Semiconductor Processes and Devices 2025  
DOI
10.1109/SISPAD66650.2025.11186386
Language
English
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024