• English
  • Deutsch
  • Einloggen
    Passwort-Login
    Forschungsergebnisse
    Projekte
    Wissenschaftler:innen
    Institute
    Statistiken
Logo des Repositoriums
Fraunhofer-Gesellschaft
  1. Startseite
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Towards Scalable Evaluation of Software Understanding: A Methodology Proposal
 
  • Details
  • Vollanzeige
Optionen
13. Oktober 2025
Konferenzbeitrag
Titel

Towards Scalable Evaluation of Software Understanding: A Methodology Proposal

Abstract
In reverse engineering our goal is to build systems that help people to understand software. However, the field has not converged on a way to measure software understanding. In this paper, we make the case that understanding should be measured via performance on understanding-questions. We propose a method for constructing understanding-questions and evaluating answers at scale. We conduct a case study in which we apply our method and compare Ghidra’s default auto analysis with an analysis that supports binary constructs that are specific to Objective-C.
Autor:innen
Magin, Florian
Fraunhofer-Institut für Sichere Informationstechnologie SIT  
Wache, Magdalena
Fraunhofer-Institut für Sichere Informationstechnologie SIT  
Scherf, Fabian William
Fraunhofer-Institut für Sichere Informationstechnologie SIT  
Fischer, Cléo  
Fraunhofer-Institut für Sichere Informationstechnologie SIT  
Zabel, Jonas
Fraunhofer-Institut für Sichere Informationstechnologie SIT  
Enthalten in:
SURE 2025, The 1st ACM Workshop on Software Understanding and Reverse Engineering. Proceedings  
Konferenz
Workshop on Software Understanding and Reverse Engineering 2025  
Conference on Computer and Communications Security 2025  
File(s)
Download (747.34 KB)
Nutzungsrecht
CC BY 4.0: Creative Commons Namensnennung
DOI
10.1145/3733822.3764672
10.24406/publica-6136
Sprache
Englisch
Fraunhofer-Institut für Sichere Informationstechnologie SIT  
Schlagwort(e)
  • Decompilation

  • Evaluation

  • Understanding

  • Large Language Models

  • Cookie-Einstellungen
  • Impressum
  • Datenschutzbestimmungen
  • Api
  • Kontakt
© 2024