• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Glass4AutoFuture: Modeling thermal-mechanical dynamics in vacuum-assisted deep drawing of 3D thin glass components for automotive interiors
 
  • Details
  • Full
Options
July 5, 2025
Conference Paper
Title

Glass4AutoFuture: Modeling thermal-mechanical dynamics in vacuum-assisted deep drawing of 3D thin glass components for automotive interiors

Abstract
The future of mobility is being shaped by autonomous, electrified, and energy-efficient vehicles, with glass increasingly replacing traditional materials like metals and polymers due to its lightweight, durable, and aesthetically appealing characteristics. Meeting the rising demand for complex shapes, high precision, and cost-efficient production of glass components in the automotive industry requires innovative processing technologies. This work presents a vacuum-assisted deep drawing process for manufacturing thin glass display covers for automotive interiors. To address challenges in thin glass forming, such as glass thinning, edge wrinkles, and shape accuracy, a numerical simulation model was developed. The model integrates the thermal and mechanical aspects of glass and molding tool materials, focusing on the viscoelastic behavior of glass at high forming temperatures. A finite strain material model accounts for time, temperature, and strain rate dependencies, while nonlinear thermal-mechanical interactions at the glass-tool interface are captured using a novel method for simultaneously determining contact heat transfer and friction coefficients. Experimental validation demonstrated the model’s ability to achieve high precision, reduce glass failures, and reliably optimize the process. By identifying critical factors influencing glass thinning, this research offers valuable insights into advancing thin glass processing technologies to meet the precision demands of future automotive applications.
Author(s)
Vu, Anh Tuan  orcid-logo
Fraunhofer-Institut für Produktionstechnologie IPT  
Meiners, Constantin  
Fraunhofer-Institut für Produktionstechnologie IPT  
Bögershausen, Skadi
RWTH Aachen University  
Rojacher, Cornelia  
Fraunhofer-Institut für Produktionstechnologie IPT  
Brepols, Tim
RWTH Aachen University  
Reese, Stefanie
University of Siegen
Bergs, Thomas  
Fraunhofer-Institut für Produktionstechnologie IPT  
Mainwork
Material Forming. 28th International ESAFORM Conference on Material Forming, ESAFORM 2025  
Project(s)
Technologieentwicklung für die effiziente Produktion von Exterieur- und Interieurkomponenten aus Glas für die Zukunft des Automobils
Funder
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.  
Conference
International Conference on Material Forming 2025  
Open Access
File(s)
Download (1.27 MB)
Rights
CC BY 3.0 (Unported): Creative Commons Attribution
DOI
10.21741/9781644903599-144
10.24406/publica-5497
Additional link
Full text
Language
English
Fraunhofer-Institut für Produktionstechnologie IPT  
Keyword(s)
  • Thin glass forming

  • Finite viscoelasticity

  • Friction

  • Contact heat transfer

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024