• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Anderes
  4. Hard-constraining Neumann boundary conditions in physics-informed neural networks via Fourier feature embeddings
 
  • Details
  • Full
Options
2025
Paper (Preprint, Research Paper, Review Paper, White Paper, etc.)
Title

Hard-constraining Neumann boundary conditions in physics-informed neural networks via Fourier feature embeddings

Title Supplement
Published on arXiv
Abstract
We present a novel approach to hard-constrain Neumann boundary conditions in physics-informed neural networks (PINNs) using Fourier feature embeddings. Neumann boundary conditions are used to described critical processes in various application, yet they are more challenging to hard-constrain in PINNs than Dirichlet conditions. Our method employs specific Fourier feature embeddings to directly incorporate Neumann boundary conditions into the neural network's architecture instead of learning them. The embedding can be naturally extended by high frequency modes to better capture high frequency phenomena. We demonstrate the efficacy of our approach through experiments on a diffusion problem, for which our method outperforms existing hard-constraining methods and classical PINNs, particularly in multiscale and high frequency scenarios.
Author(s)
Straub, Christopher  orcid-logo
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB  
Brendel, Philipp  orcid-logo
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB  
Medvedev, Vlad
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB  
Roßkopf, Andreas  
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB  
Project(s)
Explainable, AI-based simulation using Physics-Informed Neural Networks (PINNs)
Funder
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.  
Conference
Workshop on Machine Learning Multiscale Processes 2025  
International Conference on Learning Representations 2025  
DOI
10.48550/arXiv.2504.01093
Language
English
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024