• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Image space formalism of convolutional neural networks for k‐space interpolation
 
  • Details
  • Full
Options
August 5, 2025
Journal Article
Title

Image space formalism of convolutional neural networks for k‐space interpolation

Abstract
Purpose: Noise resilience in image reconstructions by scan-specific robust artificial neural networks for k-space interpolation (RAKI) is linked to nonlinear activations in k-space. To gain a deeper understanding of this relationship, an image space formalism of RAKI is introduced for analyzing noise propagation analytically, identifying and characterizing image reconstruction features and to describe the role of nonlinear activations in a human-readable manner.
Theory and Methods: The image space formalism for RAKI inference is employed by expressing nonlinear activations in k-space as element-wise multiplications with activation masks, which transform into convolutions in image space. Jacobians of the de-aliased, coil-combined image relative to the aliased coil images can be expressed algebraically; thus, the noise amplification is quantified analytically (g-factor maps). We analyze the role of nonlinearity for noise resilience by controlling the degree of nonlinearity in the reconstruction model via the negative slope parameter in leaky ReLU.
Results: The analytical g-factor maps correspond with those obtained from Monte Carlo simulations and from an auto differentiation approach for in vivo brain images. Apparent blurring and contrast loss artifacts are identified as implications of enhanced noise resilience. These residual artifacts can be traded against noise resilience by adjusting the degree of nonlinearity in the model (Tikhonov-like regularization) in case of limited training data. The inspection of image space activations reveals an autocorrelation pattern leading to a potential center artifact.
Conclusion: The image space formalism of RAKI provides the means for analytical quantitative noise-propagation analysis and human-readable visualization of the effects of the nonlinear activation functions in k-space.
Author(s)
Dawood, P.
Breuer, Felix  
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Gram, M.
Homolya, I.
Jakob, P.M.
Zaiss, M.
Blaimer, Martin  orcid-logo
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Journal
Magnetic resonance in medicine  
Open Access
File(s)
Download (93.79 MB)
Rights
CC BY 4.0: Creative Commons Attribution
DOI
10.1002/mrm.70002
10.24406/publica-5030
Additional full text version
Landing Page
Language
English
Fraunhofer-Institut für Integrierte Schaltungen IIS  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
Ā© 2024