• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Advancing oxygen separation: insights from experimental and computational analysis of La0.7Ca0.3Co0.3Fe0.6M0.1O3−δ (M = Cu, Zn) (M = Cu, Zn) oxygen transport membranes
 
  • Details
  • Full
Options
2024
Journal Article
Title

Advancing oxygen separation: insights from experimental and computational analysis of La0.7Ca0.3Co0.3Fe0.6M0.1O3−δ (M = Cu, Zn) (M = Cu, Zn) oxygen transport membranes

Abstract
In this study, perovskite-type La0.7Ca0.3Co0.3 Fe0.6M0.1O3−δ (M = Cu, Zn) powders were synthesized using a scalable reverse co-precipitation method, presenting them as novel materials for oxygen transport membranes. The comprehensive study covered various aspects including oxygen permeability, crystal structure, conductivity, morphology, CO2 tolerance, and long-term regenerative durability with a focus on phase structure and composition. The membrane La0.7Ca0.3Co0.3Fe0.6Zn0.1O3−δ exhibited high oxygen permeation fluxes, reaching up to 0.88 and 0.64 mL·min−1cm−2 under air/He and air/CO2 gradients at 1173 K, respectively. After 1600 h of CO2 exposure, the perovskite structure remained intact, showcasing superior CO2 resistance. A combination of first principles simulations and experimental measurements was employed to deepen the understanding of Cu/Zn substitution effects on the structure, oxygen vacancy formation, and transport behavior of the membranes. These findings underscore the potential of this highly CO2-tolerant membrane for applications in high-temperature oxygen separation. The enhanced insights into the oxygen transport mechanism contribute to the advancement of next-generation membrane materials. (Figure presented.)
Author(s)
Chen, Guoxing  
Fraunhofer-Einrichtung für Wertstoffkreisläufe und Ressourcenstrategie IWKS  
Liu, Wenmei
Widenmeyer, Marc
Yu, Xiao
Fraunhofer-Einrichtung für Wertstoffkreisläufe und Ressourcenstrategie IWKS  
Zhao, Zhijun
Yoon, Songhak
Fraunhofer-Einrichtung für Wertstoffkreisläufe und Ressourcenstrategie IWKS  
Yan, Ruijuan
Xie, Wenjie
Fraunhofer-Einrichtung für Wertstoffkreisläufe und Ressourcenstrategie IWKS  
Feldhoff, Armin
Homm, Gert  
Fraunhofer-Einrichtung für Wertstoffkreisläufe und Ressourcenstrategie IWKS  
Ionescu, Emanuel  orcid-logo
Fraunhofer-Einrichtung für Wertstoffkreisläufe und Ressourcenstrategie IWKS  
Fyta, Maria G.
Weidenkaff, Anke  orcid-logo
Fraunhofer-Einrichtung für Wertstoffkreisläufe und Ressourcenstrategie IWKS  
Journal
Frontiers of chemical science and engineering  
DOI
10.1007/s11705-024-2421-5
Language
English
Fraunhofer-Einrichtung für Wertstoffkreisläufe und Ressourcenstrategie IWKS  
Keyword(s)
  • energy barrier

  • formation energy

  • membrane

  • oxygen ions diffusion

  • oxygen permeation

  • oxygen vacancy

  • perovskite

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024