Options
February 26, 2024
Journal Article
Title
Predicting aerosol transmission in airplanes: Benefits of a joint approach using experiments and simulation
Abstract
We investigate the transmission of aerosol particles in an airplane cabin with a joint approach using experiments and simulation. Experiments were conducted in a realistic aircraft cabin with heated dummies acting as passengers. A Sheffield head with an aerosol generator was used to emulate an infected passenger and particle numbers were measured at different locations throughout the cabin to quantify the exposure of other passengers. The same setting was simulated with a computational fluid dynamics model consisting of a Lagrange continuous phase for capturing the air flow, coupled with a Lagrange suspended discrete phase to represent the aerosols. Virtual measurements were derived from the simulation and compared with the experiments. Our main results are: the experimental setup provides good measurements well suited for model validation, the simulation does correctly reproduce the fundamental mechanisms of aerosol dispersion and simulations can help to improve the understanding of aerosol transmission for example by visualizing particle distributions. Furthermore, with findings from the simulation it was possible to crucially improve the experimental setup, proving that feedback between the numerical and the hardware world is indeed beneficial.
Author(s)
Project(s)