• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Recycling process development with integrated life cycle assessment - a case study on oxygen transport membrane material
 
  • Details
  • Full
Options
2023
Journal Article
Title

Recycling process development with integrated life cycle assessment - a case study on oxygen transport membrane material

Abstract
The transformation towards a circular economy based on sustainable technologies requires future-oriented materials development, which considers materials recycling with a minimum environmental impact (EI). This demands a holistic approach towards materials design, including a combined assessment of functional and environmental performance. Scientific methods for environmental assessment, e.g., life cycle assessment (LCA), are well established but rarely integrated into the chemical process development at early stages. Consequently, sustainability claims often lack scientific verification. Here, we test the approach of integrating a screening LCA into the development of a chemical (recycling) process. As a relevant use case, we selected the recently developed oxygen transport membrane (OTM) material (La0.9Ca0.1)2Ni0.75Cu0.25O4±δ (LCNC). An initial LCA identified the consumption of primary metal nitrates as a major contributor to the EI of the primary synthesis. To address this issue, a Pechini-based chemical recycling process for LCNC was developed, which involves microwave-heated dissolution and subsequent re-gelation. Experimental results demonstrate the synthesis of recycled LCNC powder with primary-like properties, similar reaction behaviour, and >96% yield. Based on the LCA results, the EI of recycling is reduced by up to 76% compared to the primary synthesis in 12 of 14 impact categories. Measures for the simultaneous improvement of the process functionality and environmental performance were identified. The approach of integrating LCA in chemical process development is discussed critically based on the given use case. The results strongly encourage the integration of LCA as a standard method into the future development of sustainable chemical processes.
Author(s)
Johanning, Melanie
Widenmeyer, Marc
Escobar Cano, Giamper
Zeller, Vanessa
Klemenz, Sebastian Peter Josef  orcid-logo
Fraunhofer-Einrichtung für Wertstoffkreisläufe und Ressourcenstrategie IWKS  
Chen, Guoxing  
Fraunhofer-Einrichtung für Wertstoffkreisläufe und Ressourcenstrategie IWKS  
Feldhoff, Armin
Weidenkaff, Anke  orcid-logo
Fraunhofer-Einrichtung für Wertstoffkreisläufe und Ressourcenstrategie IWKS  
Journal
Green chemistry  
Open Access
DOI
10.1039/d3gc00391d
Additional full text version
Landing Page
Language
English
Fraunhofer-Einrichtung für Wertstoffkreisläufe und Ressourcenstrategie IWKS  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024