• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Anderes
  4. Towards Probabilistic Safety Guarantees for Model-Free Reinforcement Learning
 
  • Details
  • Full
Options
2023
Paper (Preprint, Research Paper, Review Paper, White Paper, etc.)
Title

Towards Probabilistic Safety Guarantees for Model-Free Reinforcement Learning

Title Supplement
Position Paper published on HAL science ouverte
Abstract
Improving safety in model-free Reinforcement Learning is necessary if we expect to deploy such systems in safety-critical scenarios. However, most of the existing constrained Reinforcement Learning methods have no formal guarantees for their constraint satisfaction properties. In this paper, we show the theoretical formulation for a safety layer that encapsulates model epistemic uncertainty over a distribution of constraint model approximations and can provide probabilistic guarantees of constraint satisfaction.
Author(s)
Schmoeller da Roza, Felippe
Fraunhofer-Institut für Kognitive Systeme IKS  
Roscher, Karsten  
Fraunhofer-Institut für Kognitive Systeme IKS  
Günneman, Stephan
Technische Universität München  
Project(s)
IKS-Ausbauprojekt  
Funder
Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie  
Conference
International Conference on Computer Safety, Reliability and Security 2023  
File(s)
Download (71.77 KB)
Link
Link
Rights
Under Copyright
DOI
10.24406/publica-1983
Language
English
Fraunhofer-Institut für Kognitive Systeme IKS  
Fraunhofer Group
Fraunhofer-Verbund IUK-Technologie  
Keyword(s)
  • reinforcement learning

  • RL

  • artificial intelligence

  • AI

  • safety

  • safe AI

  • constrained Markov decision process

  • CMDP

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024