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Abstract—Improving safety in model-free Reinforcement
Learning is necessary if we expect to deploy such systems
in safety-critical scenarios. However, most of the existing con-
strained Reinforcement Learning methods have no formal guar-
antees for their constraint satisfaction properties. In this paper,
we show the theoretical formulation for a safety layer that
encapsulates model epistemic uncertainty over a distribution of
constraint model approximations and can provide probabilistic
guarantees of constraint satisfaction.

Index Terms—Reinforcement Learning, Safe AI, CMDP

I. INTRODUCTION

With the recent advancements of Deep Learning, Reinforce-

ment Learning (RL) has resurfaced in the field of Artificial

Intelligence (AI) and achieved remarkable accomplishments in

challenging tasks such as playing complex video games and

controlling robotic systems. RL enables agents to learn optimal

behaviors through interactions with dynamic environments,

without requiring explicit supervision or predefined rules and

holds the promise of revolutionizing decision-making and

control systems across a wide range of domains. However, to

unlock this potential, safety considerations become paramount

for instilling confidence and trust in RL-based systems, espe-

cially in applications where the impact of failures or incorrect

decisions can have catastrophic consequences. Safety in this

paper refers to the assurance of reliable and secure operation

to protect individuals, the environment, and assets from harm

or damage. The need for safety in RL is not only necessary to

protect human lives and the surrounding environment but also

to fulfill the regulatory and ethical requirements that demand

responsible and accountable deployment of AI technologies.

There are different approaches for tackling safety within

the RL landscape. Safe exploration refers to the process of

actively exploring the environment while avoiding actions that

pose a risk of significant harm. Risk awareness contemplates

algorithms that can evaluate potential risks associated with

its actions, taking measures to minimize the likelihood and

severity of adverse outcomes. Adversarial robustness aims at

designing agents able to defend against adversarial attacks

that could otherwise compromise the agent’s performance or

integrity. Online monitoring and verification involves the in-

tegration of real-time monitoring and verification mechanisms

to assess the agent’s behavior during runtime, allowing for

timely intervention or corrective measures to prevent potential

harm.

We will rather consider the constraint satisfaction paradigm,

which focuses on RL systems able to adhere to safety

specifications in the form of constraints. Safety constraints

can represent physical limits, legal and ethical considera-

tions, operational constraints, resource limitations, etc. More

specifically, we consider environments that are modeled as a

constrained Markov Decision Process (CMDP) [1], defined as

a tuple M := (S,A, γ, R, P, c), where S is the set of states,

A is the set of actions, R : S × A × S �→ R is the reward

function, P : S × A× S �→ [0, 1] is the transition probability

function, γ ∈ (0, 1) is the discount factor, and c : S �→ R is

the safety cost function. To simplify the notation, c(st) will be

represented as an immediate cost ct. The safety cost dynamics

is given by the function f : R× S ×A �→ R, with

ct+1 = f(ct, st, at). (1)

The RL goal in a CMDP is to find the policy π : S �→ A
that optimizes the long-term cumulative reward while keeping

the cost bounded by a safe threshold h ∈ R, as shown in

eq. (2).

max
π∈Π

E

[ ∞∑
t=0

γtR (st, π (st))

]
s.t. ct ≤ h, ∀t ≥ 0. (2)

II. CMDPS AND RL - RELATED WORK

When considering constrained RL methods that can solve

continuous control problems, a popular approach is to use

the Lagrangian operator and transform the problem into an

unconstrained optimization problem, as done in [2] and [3].

Constrained Policy Optimization (CPO) is another popular

algorithm and was the first policy gradient method to solve

the CMDP problem [4]. [5] and [6] look at the problem from

a different perspective, which consists in integrating a safety
layer that projects potentially unsafe actions produced by a

Deep Neural Network (DNN) into a safe set. The safety layer

is composed of linear approximations to the constraint models,

with the safe actions calculated by solving a constrained least

squares problem.

It is important to notice that, as mentioned in [7], much

of the work available in this direction is limited to simplistic

simulated tasks, indicating that enabling RL to be applied in

real-world constrained systems is not trivial and remains a

challenge to overcome. Additionally, [7] defines three levels of



safety in control systems1 and show how existing constrained-

RL algorithms are only able to tackle the most basic level

of safety, with stronger safety guarantees only being possible

when prior knowledge about the system dynamics is embedded

into the controller.

III. DETERMINISTIC SAFETY LAYER

Among the previous attempts to solve the CMDP problem

using RL, we build on top of the safety filter approaches from

[5] and [6] to achieve better constraint satisfaction properties.

The underlying constraint dynamics from eq. (1) can be

approximated by the first-order Taylor expansion, shown in

eq. (3).

ct+1 ≈ ct + gφ(st)
�at, (3)

where gφ(st) is a DNN, parametrized by weights φ, that

approximates the system’s constraint dynamics.
A safe action at

∗ can be obtained through the optimization

problem shown below.

at
∗ = argmin

x

1

2
‖x− at‖2

s.t. ct + gφ(st)
�x ≤ h.

(4)

IV. PROBABILISTIC SAFETY LAYER

One limitation of eq. (4) is its dependency on the accuracy

of the approximated dynamics model gφ(st). To address this,

as solution we propose replacing the deterministic constraint

model with a distribution over models or trained weights,

allowing to achieve robustness in the face of epistemic un-

certainty. The new constraint criterion becomes guaranteeing

that the predicted safety signal ct+1 for a model ψ(·) sampled

from the distribution stays below the given threshold with

probability p:

Probψ(·)∼Nk(μ,Σ)

[
ct + ψ(st)

�at ≤ h
] ≥ p, (5)

whereNk(μ,Σ) represents the multivariate normal distribution

of a k-dimensional random vector, the same dimension as the

action vector at, parameterized by the mean vector μ ∈ R
k

and the covariance matrix Σ ∈ R
k×k. Since the random

vector is linearly independent, Σ is a diagonal matrix, i.e.,

Σ =

⎡
⎣σ1 ... 0
... ... ...
0 ... σk

⎤
⎦
k×k

.

The dot product ψ(st)
�at =

∑k
i=1 ψiai, which is a sum

of normal distributions, can be substituted by an univariate

random variable z, resulting in the following equivalent dis-

tribution2:

Probz∼N(∑k
i=0 μiai,

∑k
i=0 σ

2
i a

2
i )
[ct + z ≤ h] ≥ p. (6)

1Safety Level I comprises systems that encourage constraint satisfaction
with no formal guarantee, Safety Level II considers algorithms that satisfy
constraints with probability p, and Safety Level III represents controllers able
to guarantee hard constraint satisfaction.

2consider that the sum of n independent random variables Y = c1X1 +
...+cnXn with means μ1...μn and variances σ2

1 ...σ
2
n is a normal distribution

with mean c1μ1 + ...+ cnμn and variance c21σ
2
1 + ...+ c2nσ

2
n.

Now converting eq. (6) to a standard normal distribution:

Probz∼N (0,1)

⎡
⎣ct + z

√√√√ k∑
i=0

σ2
i a

2
i +

k∑
i=0

μiai ≤ h

⎤
⎦ ≥ p.

(7)
This probability can be calculated with the standard normal

cumulative distribution function (CDF), Φ(·). Rearranging the

terms in eq. (7) results in

Φ

⎛
⎝h− ct −

∑k
i=0 μiai√∑k

i=0 σ
2
i a

2
i

⎞
⎠ ≥ p. (8)

Finally, after applying the inverse CDF operator and with the

appropriate manipulation, the probabilistic constraint criterion

is obtained:

ct +Φ−1(p)

√√√√ k∑
i=0

σ2
i a

2
i +

k∑
i=0

μiai ≤ h. (9)

V. CONCLUSION

The lack of safety guarantees prevents existing RL systems

from becoming a viable alternative for controlling complex

control systems. Existing safe RL approaches primarily focus

on encouraging safe policies but lack robust evidence for

building a solid safety case. In this work, we introduced a

novel safety layer formulation able to solve CMDPs with

probability p that, in our view, can help to overcome this

limitation by providing probabilistic guarantees to model-free

constrained-RL.
The theoretical findings presented in this paper must be

backed by empirical results obtained through experimentation.

The outlined next steps involve: (i) consider the benefits and

limitations of different approaches to obtain distributions over

constraint models, (ii) test the proposed method’s performance

in existing simulation benchmarks, and (iii) compare it to

existing constrained-RL methods.
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