• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. CMOS-compatible manufacturability of sub-15 nm Si/SiO2/Si nanopillars containing single Si nanodots for single electron transistor applications
 
  • Details
  • Full
Options
March 28, 2023
Journal Article
Title

CMOS-compatible manufacturability of sub-15 nm Si/SiO2/Si nanopillars containing single Si nanodots for single electron transistor applications

Abstract
This study addresses the complementary metal-oxide-semiconductor-compatible fabrication of vertically stacked Si/SiO2/Si nanopillars (NPs) with embedded Si nanodots (NDs) as key functional elements of a quantum-dot-based, gate-all-around single-electron transistor (SET) operating at room temperature. The main geometrical parameters of the NPs and NDs were deduced from SET device simulations using the nextnano++ program package. The basic concept for single silicon ND formation within a confined oxide volume was deduced from Monte-Carlo simulations of ion-beam mixing and SiOx phase separation. A process flow was developed and experimentally implemented by combining bottom-up (Si ND self-assembly) and top-down (ion-beam mixing, electron-beam lithography, reactive ion etching) technologies, fully satisfying process requirements of future 3D device architectures. The theoretically predicted self-assembly of a single Si ND via phase separation within a confined SiOx disc of <500 nm3 volume was experimentally validated. This work describes in detail the optimization of conditions required for NP/ND formation, such as the oxide thickness, energy and fluence of ion-beam mixing, thermal budget for phase separation and parameters of reactive ion beam etching. Low-temperature plasma oxidation was used to further reduce NP diameter and for gate oxide fabrication whilst preserving the pre-existing NDs. The influence of critical dimension variability on the SET functionality and options to reduce such deviations are discussed. We finally demonstrate the reliable formation of Si quantum dots with diameters of less than 3 nm in the oxide layer of a stacked Si/SiO2/Si NP of 10 nm diameter, with tunnelling distances of about 1 nm between the Si ND and the neighboured Si regions forming drain and source of the SET.
Author(s)
Borany, Johannes von
Helmholtz-Zentrum Dresden-Rossendorf -HZDR-  
Engelmann, Hans-Jürgen
Helmholtz-Zentrum Dresden-Rossendorf -HZDR-  
Heinig, Karl-Heinz
Helmholtz-Zentrum Dresden-Rossendorf -HZDR-  
Amat, Esteve
Institute of Microelectronics of Barcelona (IMB-CNM, CSIC)
Hlawacek, Gregor
Helmholtz-Zentrum Dresden-Rossendorf -HZDR-  
Klüpfel, Fabian J.
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB  
Hübner, René
Helmholtz-Zentrum Dresden-Rossendorf -HZDR-  
Möller, Wolfhard
Helmholtz-Zentrum Dresden-Rossendorf -HZDR-  
Pourteau, Marie-Line
Université Grenoble Alpes
Rademaker, Guido
Université Grenoble Alpes, CEA
Rommel, Mathias  orcid-logo
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB  
Baier, Leander  
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB  
Pichler, Peter  orcid-logo
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB  
Perez-Murano, Francesc
Institute of Microelectronics of Barcelona (IMB-CNM, CSIC)
Tiron, Raluca
Université Grenoble Alpes, CEA
Journal
Semiconductor Science and Technology  
Project(s)
Ion-irradiation-induced Si Nanodot Self-Assembly for Hybrid SET-CMOS Technology  
Funding(s)
H2020  
Funder
European Commission  
Open Access
File(s)
Download (3 MB)
Rights
CC BY 4.0: Creative Commons Attribution
DOI
10.1088/1361-6641/acbe5d
10.24406/publica-1154
Language
English
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB  
Keyword(s)
  • CMOS

  • Single-electron transistor

  • Nanostructure fabrication

  • Nanopillars

  • Silicon nanodot

  • Self-organization

  • Ion-beam mixing

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024