• English
  • Deutsch
  • Log In
    Password Login
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. ElasticFace: Elastic Margin Loss for Deep Face Recognition
 
  • Details
  • Full
Options
2022
Conference Paper
Titel

ElasticFace: Elastic Margin Loss for Deep Face Recognition

Abstract
Learning discriminative face features plays a major role in building high-performing face recognition models. The recent state-of-the-art face recognition solutions proposed to incorporate a fixed penalty margin on commonly used classification loss function, softmax loss, in the normalized hypersphere to increase the discriminative power of face recognition models, by minimizing the intra-class variation and maximizing the inter-class variation. Marginal penalty softmax losses, such as ArcFace and CosFace, assume that the geodesic distance between and within the different identities can be equally learned using a fixed penalty margin. However, such a learning objective is not realistic for real data with inconsistent inter-and intra-class variation, which might limit the discriminative and generalizability of the face recognition model. In this paper, we relax the fixed penalty margin constrain by proposing elastic penalty margin loss (ElasticFace) that allows flexibility in the push for class separability. The main idea is to utilize random margin values drawn from a normal distribution in each training iteration. This aims at giving the decision boundary chances to extract and retract to allow space for flexible class separability learning. We demonstrate the superiority of our ElasticFace loss over ArcFace and CosFace losses, using the same geometric transformation, on a large set of mainstream benchmarks. From a wider perspective, our ElasticFace has advanced the state-of-the-art face recognition performance on seven out of nine mainstream benchmarks. All training codes, pre-trained models, training logs will be publicly released.
Author(s)
Boutros, Fadi
Fraunhofer-Institut für Graphische Datenverarbeitung IGD
Damer, Naser
Fraunhofer-Institut für Graphische Datenverarbeitung IGD
Kirchbuchner, Florian orcid-logo
Fraunhofer-Institut für Graphische Datenverarbeitung IGD
Kuijper, Arjan orcid-logo
Fraunhofer-Institut für Graphische Datenverarbeitung IGD
Hauptwerk
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2022. Proceedings
Zeitschrift
2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
Project(s)
Next Generation Biometric Systems
Funder
Bundesministerium für Bildung und Forschung -BMBF-
Konferenz
Conference on Computer Vision and Pattern Recognition Workshops 2022
DOI
10.1109/CVPRW56347.2022.00164
10.24406/publica-393
File(s)
ElasticFace_Elastic_Margin_Loss_for_Deep_Face_Recognition.pdf (1.34 MB)
Language
English
google-scholar
Fraunhofer-Institut für Graphische Datenverarbeitung IGD
Tags
  • Lead Topic: Smart Cit...

  • Lead Topic: Visual Co...

  • Research Line: Comput...

  • Research Line: Machin...

  • Biometrics

  • Feature representatio...

  • Face recognition

  • Machine learning

  • Deep learning

  • ATHENE

  • CRISP

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022