• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Robust disturbance classification in power transmission systems with denoising recurrent autoencoders
 
  • Details
  • Full
Options
2022
Journal Article
Title

Robust disturbance classification in power transmission systems with denoising recurrent autoencoders

Abstract
The automated classification of grid disturbances based on phasor measurements is a key technology for the reliable operation of power transmission systems. The predominant use of simulated training data limits the applicability of existing classification approaches due to the missing consideration of measurement errors or data quality issues. To mitigate these shortcomings, this study presents a robust disturbance classification procedure incorporating denoising recurrent autoencoders within a novel two-stage training approach. The developed disturbance classification procedure is evaluated for different noise characteristics and dataset combinations created with an optimization based error model. Experimental results based on a generic power transmission system show superior performance of the proposed two-stage design compared to a conventional, one-stage model training.
Author(s)
Kummerow, Andre  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Dirbas, Mohammad  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Monsalve, Cristian  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Nicolai, Steffen  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Bretschneider, Peter  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Journal
Sustainable energy, grids and networks  
Open Access
File(s)
Download (1.75 MB)
Rights
CC BY
DOI
10.1016/j.segan.2022.100803
10.24406/publica-r-418818
Language
English
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Keyword(s)
  • Phasor measurements

  • Disturbance classification

  • Recurrent neural network

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024