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a b s t r a c t

The automated classification of grid disturbances based on phasor measurements is a key technology
for the reliable operation of power transmission systems. The predominant use of simulated training
data limits the applicability of existing classification approaches due to the missing consideration
of measurement errors or data quality issues. To mitigate these shortcomings, this study presents
a robust disturbance classification procedure incorporating denoising recurrent autoencoders within
a novel two-stage training approach. The developed disturbance classification procedure is evaluated
for different noise characteristics and dataset combinations created with an optimization based error
model. Experimental results based on a generic power transmission system show superior performance
of the proposed two-stage design compared to a conventional, one-stage model training.

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

1.1. Disturbance classification with simulated training data

A real-time analysis of phasor measurements enables an au-
omated identification and localization of grid disturbances (e.g.
enerator trips, short circuits, outages of renewable energy re-
ources) and is an important monitoring function for today’s
ower transmission systems [1–7]. Typically, multiple phasor
easurement unit (PMU) devices are deployed at several substa-

ions in the grid to provide high resolution and time-synchronized
oltage, current and frequency data streams (wide area monitor-
ng system). A machine learning based detection of grid distur-
ances enables a fast and reliable system operation by activating
ppropriate countermeasures (e.g. remedial action schemes) to
itigate cascading failures or large-scale supply disruptions [8–
0].
Common classification approaches rely on a sufficient and rep-

esentative training database including all relevant disturbance
vents. The exclusive use of historical PMU measurements is
ot practical for training and evaluating the proposed classifi-
ation approach, as this would require many measured distur-
ance events occurring during system operation and would not
apture previously unobserved disturbance event of future op-
ration conditions. Therefore, dynamic grid simulations are used
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to synthetically generate the necessary PMU signals for various
disturbance events and steady state conditions. As a consequence,
simulation model deficiencies (e.g. inaccurate model parameters)
can lead to large signal deviations and misclassifications during
the application phase (inference). This especially accounts for the
modelling of the PMU devices and their associated measurement
errors, which are not included in current dynamic simulation
models. As in other application fields, machine learning models
and especially artificial neural networks suffer from deviations
between training and test data characteristics and may lead to
misclassifications during the inference.

Based on preliminary work [1,2], the basic architecture of a
generic PMU based disturbance classification system is shown in
Fig. 1.

Dynamic simulations XS are used during the training phase
and phasor measurements XP from a wide area monitoring sys-
tem during the application phase. Each input matrix consists of
one or more samples frommultiple PMU signals over a given time
period. The classification approach analyses the normalized PMU
signals XN and creates a representative feature representation
f to estimate the location ŷLoc and type ŷType of a particular
disturbance event. In case of artificial neural networks, the feature
extraction and classification modules can be learned together via
backpropagation by minimizing an empirical error.

1.2. Error characteristics of phasor measurements

The IEEE C37.118 standard (since 2018: IEC 60255-118-1-
2018 [11]) describes different performance requirements for the
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Nomenclature

C class configuration
e error signal/component
f feature vector
ht
E, h

t
D encoder (E) and decoder (D) hidden

state vector
K number of disturbance classes
L Laplacian distribution
M number of PMU devices/sensors
N Gaussian distribution
p̂ (estimated) posterior probability vector
R number of GRU hidden units
st score value at time step t
t time step
T Number of time steps per sample
xtF, x

t
U frequency (F) and voltage magnitude (U)

value at time step t
XP, XN

P raw and normalized (N) measured ob-
servation matrix

X S, XN
S raw and normalized (N) simulated ob-

servation matrix
y (true) disturbance class label
ŷLoc (estimated) disturbance location
ŷType (estimated) disturbance type
αt attention weight at time step t
θE, θD, θC trainable parameters of the encoder (E),

decoder (D) and classifier (C)

Fig. 1. Main principle of a PMU based disturbance classification system using
simulated training data.

transmission of phasor measurement values (e.g. the total vec-
tor error) but does not adequately describe measurement errors
by PMU devices. Several studies [12–16] investigated the char-
acteristics of PMU induced measurement errors, which can be
caused mainly by complex grid operations due to a high number
of different control devices and malfunctions of PMU ancillary
components (e.g. drifting internal clocks, low-accuracy instru-
ment transformers). In most cases, the error component follows
a white Gaussian noise or Laplacian distribution with a cer-
tain signal-to-noise-ratio (SNR) and is additionally interspersed
with missing values. Furthermore, data anomalies or outliers as
2

Table 1
Overview of typical error characteristics in PMU signals.
Characteristic Value/ Range References

Gaussian noise

SNR 30–50 dB
[12–14]Sample mean 0

Laplacian noise

SNR 30–50 dB

[14,15]Sample mean 0
Scale parameter 0.001

Missing values

Ratio 2% [12,13,16]

well as low-frequency oscillations (< 1 Hz) can additionally bias
PMU measurement signals. Based on literature findings, Table 1
summarizes the most relevant information regarding PMU mea-
surement error characteristics, which are used to build up the
optimization based error model in paragraph 2.

1.3. Main contributions and paper organization

This study provides a noise-tolerant recurrent neural network
based PMU based disturbance classification method, taking into
account Gaussian and non-Gaussian distributed measurement er-
rors and missing values. Previous work [16–19] mainly focus
on more simple error distributions and do not provide suitable
countermeasures to increase the classification results in presence
on arbitrary noise signals. For this, an optimization based error
model (introduced in [20]) has been extended to approximate
Laplacian distributed error signals with an additional random-
ized imputation of missing values. To minimize misclassifications
resulting from PMU induced measurement errors, a two-stage
training approach is introduced by incorporating denoising recur-
rent autoencoders to create robust feature representations for the
underlying classification task. Multivariate PMU frequency and
voltage signals are analysed with gated recurrent units (GRU)
and an additional attention model to capture the necessary infor-
mation to distinguish between different disturbance events. This
enables an error-tolerant identification and localization of grid
disturbances using simulated training data.

2. Extended optimization based error model

Based on preliminary work [20] an extended optimization
based error model is used to create different error components
of PMU measurements. The error model architecture is given in
Fig. 2.

The basic variant of the optimization based error model esti-
mates an erroneous PMU signal xP from the (normalized) dynamic
simulation signal xS as follows

P = xS + e with xP =
[
xtP
]t=T
t=0 . (1)

For this, Brent’s optimization [21] is used to calculate the additive
noise component e by adjusting a scaling factor k to meet a given
signal-to-noise-ratio (SNR) rSNR. This is done for each vector xS of
the observation matrix X S to build up the measurement matrix
XP. More details about the optimization based error model can be
found in [20]. In the literature, the noise component is typically
sampled from a Gaussian distribution N with a mean µ = 0 and
a unit variance σ = 1. In this study, Laplacian distributed L error
signals are considered as well with a mean µ = 0 and a scale
parameter b. With that, each entry et of the noise signal e can be
calculated as follows

et = k · εt with εt
∼ N µ, σ or εt

∼ L µ, b . (2)
( ) ( )
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Fig. 2. Extended optimization based error model architecture.

Additionally, missing PMU measurement values are consid-
red within that study and are modelled with a zero imputation
rocedure. With that, the missing values are imputed randomly
n the matrix XP by specifying a ratio for zero values rZ ∈ [0, 1].
Since the optimization based error model is applied after the data
normalization, the missing values appear as zero values at the
model input side.

3. Disturbance classification with denoising recurrent autoen-
coders

This section describes the methodological details of the pro-
posed error-tolerant disturbance classification approach. Start-
ing from the definition of the general classification task in Sec-
tion 3.1, the two-stage training approach incorporating recurrent
denoising autoencoders is presented in Section 3.2. Section 3.3
gives additional information about the encoding of multivariate
PMU frequency and voltage signals using GRUs and specialized
attention mechanisms.

3.1. General problem setting

In general, the simultaneous identification and localization of
grid disturbances, as introduced in [2], can be solved with regular
classification approaches such as artificial neural networks. The
input data XP (measured) or X S (simulated) consists of frequency
and voltage magnitude signals over a fixed time period T from M
PMU devices distributed over the grid

XP,S =
[
xtP,S
]t=T
t=0 with XP ∈ R2×T×M. (3)

In contrast to existing disturbance classification approaches,
no full observability of the grid with PMUs is required, because
the classification model directly predict the disturbance type yType
nd location yLoc from the available PMU signals. The spatiotem-
oral correlation between the input signals (see also Fig. 6 in
ection 4.1) allows a detection of disturbance events even if they
re not directly observed by a PMU. Thus, the disturbance class y
s characterized as follows

=
[
y , y

]
. (4)
Loc Type

3

These events are directly or indirectly observed by PMUs. All K
disturbance events C are summarized with the class configuration
C

C = [C1 · · · CK] . (5)

3.2. Two-stage denoising autoencoder and disturbance classifier
training

To increase the robustness of the disturbance classification
based on simulated training data, a feature representation is
required, which is invariant to PMU induced measurement er-
rors. For this, a denoising recurrent autoencoder is trained on
synthesized, erroneous PMU signals X̂P to gain a robust feature
representation. Afterwards, the learned encoder part is trans-
ferred to the classification model to apply a finetuning using the
simulated PMU signals X S. In the application phase, the distur-
bance classifier predicts the disturbance event ŷ based on the
measured PMU signals XP. The general working principle is given
in Fig. 3.

The first stage includes the training of a denoising recurrent
autoencoder (dRAE). By the use of the optimization error model
(see paragraph 2), approximated PMU measurements X̂P are fed
into the dRAE model to reconstruct the clean simulation data X S.
The dRAE consists of a GRU based encoder (E) and decoder (D)
module, whose parameters θE and θD are learned together via
backpropagation through time. Inside the GRU encoder, a hidden
state vector ht

E is computed for each time step t based on the
normalized observation matrix X̂

N
P . These hidden state informa-

tion are summarized with an attention-based embedding module
(introduced in [1]) to create a compact feature representation f as
follows

f = fE
(
X̂

N
P , θE

)
with f ∈ RR. (6)

The GRU decoder takes this feature vector as input at each
time step to compute a hidden state vector ht

D. These vectors are
passed to a final dense layer with linear activation function to
estimate the normalized, clean PMU signals X̂

N
S with

X̂
N
S = fD

(
f, θD

)
with X̂

N
S ∈ RT×M. (7)

The GRU encoder and decoder parameters θE and θD are
learned by minimizing the mean absolute difference between the
estimated and true simulation values as follows

min
θE,θD

(⏐⏐⏐XN
S − X̂

N
S

⏐⏐⏐) . (8)

Further modifications of the GRU decoder are implemented to
improve the reconstruction results. The feature vector is concate-
nated with the previous target observation xN,t−1

S to compute the
hidden state vector ht

D within each GRU cell fGRU with its trainable
parameters θGRU, such that

ht
D = fGRU

([
f, xN,t−1

S

]
, ht−1

D , θGRU

)
. (9)

This is principle is also known as ‘‘teacher forcing’’ or ‘‘con-
ditioned decoder’’ [22] . Additionally, the hidden state vector of
the GRU encoder at t = 0 is initialized with the last hidden state
vector of the GRU encoder ht=0

D = hT
E and the output signals are

reconstructed in reverse order.
In the second stage the learned GRU encoder module fE is

ombined with a classifier module fC to create the disturbance
lassification model based on the simulated signals XS. With that,
the encoder feature representation is first passed to a dense
layer with a Sigmoid activation function (number of hidden units
equals the number of classes) and afterwards passed to a dense
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Fig. 3. Working principle of the two-stage disturbance classifier training and application incorporating denoising recurrent autoencoders.
s
f

ayer with a Softmax activation function to estimate the posterior
robabilities p̂ for all K disturbance classes with

p = fC
(
fE
(
XS, θE

)
, θC

)
with p̂ ∈ RK. (10)

During the training of the classification model, the GRU en-
oder parameters θE are kept fixed such that only the clas-
ifier parameters θC are learned by minimizing the following
ross-entropy loss formulation as follows

in
θC

(∑
C

yC log p̂C

)
. (11)

In the application phase, the trained classification model is
aced with measured PMU signals XP, which can differ from
he approximated signals X̂P with regard to the underlying er-
or characteristics. Corresponding experiments are presented in
ection 4.4.

.3. Gated recurrent units based encoding of phasor measurements

The GRU encoder in the dRAE and classification model plays a
ital role to compute informative and robust feature representa-
ions from multivariate PMU frequency and voltage signals. The
rchitecture of the GRU encoder module used in this paper is
iven in Fig. 4.
At the input side, standardized frequency xtF and voltage mag-

itude values xtU from M PMUs are passed to the GRU layer, such
hat the observation vector xt can be described as

xt =
[
xtF(1), x

t
U(1), . . . , x

t
F(M), x

t
U(M)

]
. (12)

Inside the GRU cells the hidden state vectors ht are computed
or each time step t to capture the necessary information from
he last recent observations and hidden states. As already intro-
uced in [1], an attention model computes the feature vector as
eighted sum of all hidden state vectors, such that

=

∑
t

αt
· ht with ht

∈ RR. (13)

With that, the number of hidden units of the GRU layer R
orresponds to the dimension of the final feature representation.
4

Fig. 4. Architecture of the GRU encoder with attention model for multivariate
PMU signals.

The attention model computes the attention weights αt by as-
igning a score value st for each hidden state using a single-layer
eedforward neural network with trainable weights wS and bias
bS as well as a tangent hyperbolic activation function. Afterwards,
these score values are squashed into a range [0, 1] by applying a
Softmax function, such that

αt
=

exp
(
st
)∑

t exp (st)
and st = tanh

(
wSh

t
+ bS

)
. (14)

With that, the neural network networks gains access to all
information from the hidden states and can focus on specific time



A. Kummerow, M. Dirbas, C. Monsalve et al. Sustainable Energy, Grids and Networks 32 (2022) 100803

s
s
r
c
w
s
T
l
s
m

b
r
P
s
c
8
t
T
o
d

p
i
t
p
a
p

Fig. 5. Grid topology of the generic power transmission system.

ranges or time steps of the input signals, which improves both the
reconstruction and classification performance.

4. Case studies and discussion

4.1. Grid topology and basic assumptions

The dynamic simulation model is a generic power transmis-
ion system, which consists of 33 substations and 172 transmis-
ion lines as well as various conventional and renewable energy
esources (e.g. photovoltaic power plants). The system size is
omparable to the IEEE 118 bus system. The grid is equipped
ith additional automatic voltage regulators (AVR) and power
ystem stabilizers (PSS) to maintain a stable system operation.
he DIgSILENT

®
Programming Language (DPL) is used to simu-

ate disturbance events (e.g. power plant outages, line outages,
hort circuits) for different load and generation conditions. For
ore details see [1] .
The PMU frequency and voltage signals at the substation bus-

ars are derived as average values from the RMS simulation
esults assuming a reporting rate of 25 f.p.s. or 40 ms. These
MU signals are extracted from the dynamic simulations until 10
after the triggering of the disturbance event. For this study, a
lass configuration of 54 disturbance events is chosen including
power plant outages, 8 load changes, 8 PV power losses, 10 line
rips and 20 three-phase short circuits at different line positions.
hese disturbance events are concentrated at or near to 8 stations
f the electrical grid. The grid topology along with the predicted
isturbance events and observed PMU stations is shown in Fig. 5.
These disturbance events are simulated for 7 operational

oints, which represent different load and generation conditions
n the grid. 5 operational points are selected for the model
raining and validation as well as the 2 remaining operational
oints for the model testing. Some exemplary PMU frequency
nd voltage magnitude signals for a generator trip for 10 s
ost-disturbance time is given in Fig. 6.
5

Fig. 6. Simulated frequency and voltage magnitude signals of a generator trip
over 10 s for 8 PMUs (ref: PMU directly located at the disturbance).

Table 2
Optimal hyperparameters of the dRAEClass and ClassOnly models.
Hyperparameter dRAEClass ClassOnly

Hidden units (Encoder) 280 150
Hidden units (Decoder) 280 –

Learning rate 1st stage: 0.001
2nd stage: 0.0007 0.01

Batch size 1st stage: 10
2nd stage: 50 50

Table 3
Overview of the Gaussian noise scenarios.
Noise scenario rSNR rZ
G1 10 dB 4%
G2 25 dB 2%

4.2. Selection of hyperparameters

As a starting point, the optimal hyperparameters for the GRU
encoder, decoder and classifier modules are identified assuming
a Gaussian distributed error signal (rSNR = 10 dB and rZ = 4%)
in the test data. For this, different training runs are performed
with early stopping and a validation set size of 25% compared to
the training set. The results are computed for the combined dRAE
and classifier model using the two-stage training approach as
described in Section 3.2 (dRAEClass) and for a sole training of the
classifier model (ClassOnly). During the experiments, significant
differences can be observed when training both model variants.
As an example Fig. 7 shows the effect of the learning rate on the
reconstruction error of the dRAE model and on the accuracy of
the classifier model in case of the two-stage training (dRAEClass).

Especially the learning rate and batch size have to be chosen
carefully in both training stages to achieve optimal results. The
best hyperparameter combinations for both model variations are
given in Table 2.

Due to the additional reconstruction task, the number of train-
able parameters of the dRAEClass combination is much higher
than the ClassOnly model.

4.3. Gaussian distributed error signals

The first investigations focus on the model performance as-
suming Gaussian distributed error signals with different amounts
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Table 4
Results for the Gaussian noise scenarios G1 and G2.
Training data Model Accuracy

(Training)
Accuracy
(Validation)

Accuracy
(Test)

Experiment 1: Tested with noisy training data (G1)

dRAE: Noisy (G1)
Classifier: Clean

dRAEClass 100.00 91.07 96.60

Clean ClassOnly 96.63 84.99 92.65

Noisy (G1) ClassOnly 97.27 81.92 93.43

Experiment 2: Tested with noisy test data (G1)

dRAE: Noisy (G1)
Classifier: Clean

dRAEClass 100.00 91.23 82.44

Clean ClassOnly 95.99 83.40 73.08

Experiment 3: Tested with noisy test data (G2)

dRAE: Noisy (G1)
Classifier: Clean

dRAEClass 99.98 91.12 83.57

Clean ClassOnly 96.19 83.40 74.83
Fig. 7. Effects of the learning rate on the training performance of the dRAE and
lassifier models.

Table 5
Overview of the Laplacian noise scenarios.
Noise scenario b rSNR rZ
L1 0.001 10 dB 4%
L2 0.001 25 dB 2%

of noise (rSNR) and missing values (rZ) in the test data. The follow-
ng two noise scenarios G1 (high amount of noise components)
nd G2 (low amount of noise components) are considered — see
able 3.
The investigations comprise of three experiments with dif-

erent training and test datasets as well as noise scenarios. The
orresponding accuracy results for the dRAEClass and ClassOnly
model with the optimal hyperparameter configurations (see Ta-
ble 2) is given in Table 4.

In experiment 1 the noise scenario G1 is considered for the
training and application phase. Additionally, the models are tested
on the noisy training data, such that X̂P = XP. The dRAEClass
model achieves the highest test accuracy with 96.60% compared
to the ClassOnly model with 92.65%. Even if the ClassOnly model
is trained with the noisy training data, the test accuracy is still
lower with 93.43% compared to the dRAEClass model. As one
ajor reason, the dRAEClass model provides a higher recognition
nd generalization capability, which improves the training and
alidation accuracies in all experiments. In experiment 2 the
odels are tested with the noisy test data, such that X̂P ̸= XP.

The error distributions between training and test data are still
the same. In that case, the differences between the model variants
6

increase with a test accuracy for the dRAEClass model of 82.44%
compared to a test accuracy for the ClassOnly model of 73.08%. In
experiment 3 the error distribution of the test data corresponds
to G2 whereas the error distribution of the training data is kept
unchanged. Here too, the dRAEClass model provides the highest
test accuracies with 83.57% compared to the ClassOnlymodel with
74.83%.

4.4. Laplacian distributed error signals

For the investigation of Laplacian distributed measurement
errors, the noise scenarios L1 (high amount of noise components)
and L2 (low amount of noise components) are defined with a
fixed scale parameter b and different values for rSNR and rZ – see
Table 5.

Four experiments are performed with different training and
test datasets as well as noise scenarios. The corresponding ac-
curacy results for the dRAEClass and ClassOnly model with the
optimal hyperparameter configurations (see Table 2) is given in
Table 6.

Similar to experiment 1 from Section 4.3, experiment 4 con-
siders an equal noise scenario (L1) for the training and test
data and both models are tested using the noisy training data.
As to be expected, the dRAEClass model shows the highest test
accuracy with 96.28% compared to the ClassOnly model with
92.47%. In experiment 5, the models are tested with the noisy
test data assuming the L1 noise distribution. If the dRAEClass
model is trained assuming L1 distributed measurement errors,
the test accuracy with 81.89% is higher compared to the Clas-
sOnly model with 75.60%. Even if dRAEClass model is trained
assuming G1 distributed measurement errors, the test accuracy
does not change significantly with 81.57%. Similar findings can
be observed from the results of experiment 6 (both models are
tested with L2 distributed errors) and 7 (both models are tested
with G1 distributed errors). As a consequence, even if the noise
distributions between training and test data are different from
each other, the dRAEClass model can still achieve significantly
better test accuracies compared to the ClassOnly model. Also in
case of Laplacian distributed errors, the training and validation
accuracies of the dRAEClass model are much higher compared to
the ClassOnly model. This has to be considered, when evaluating
the benefit of the two-stage training approach.

5. Conclusions and outlook

From the results in Sections 4.3 and 4.4, the two-stage training
approach incorporating denoising recurrent autoencoders (dRAE-
Class model) shows superior classification accuracies compared
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Results for the Laplacian noise scenarios L1 and L2.
Training data Model Accuracy

(Training)
Accuracy
(Validation)

Accuracy
(Test)

Experiment 4: Tested with noisy training data (L1)

dRAE: Noisy (L1)
Classifier: Clean

dRAEClass 99.98 89.59 96.28

Clean ClassOnly 96.21 85.37 92.47

Experiment 5: Tested with noisy test data (L1)

dRAE: Noisy (L1)
Classifier: Clean

dRAEClass 99.98 91.89 81.89

dRAE: Noisy (G1)
Classifier: Clean

dRAEClass 100.00 90.25 81.57

Clean ClassOnly 97.49 84.60 75.60

Experiment 6: Tested with noisy test data (L2)

dRAE: Noisy (L1)
Classifier: Clean

dRAEClass 99.95 89.42 82.46

Clean ClassOnly 97.20 85.70 74.84

Experiment 7: Tested with noisy test data (G1)

dRAE: Noisy (L1)
Classifier: Clean

dRAEClass 99.87 91.62 81.34

Clean ClassOnly 95.99 83.40 73.08
Table 7
Accuracies of the proposed classification approach against a benchmark model.
Model Training Validation

dRAEClass 96.63–100.00 84.99–91.89
ClassOnly 95.99–97.49 81.92–85.70
Benchmark 88.01 68.40

Fig. 8. Absolute and relative improvements of the test accuracies for different
noise scenarios.

to the one-stage training (ClassOnly model) for different noise
cenarios. The improved training and validation accuracies of the
RAEClass model suggest a better recognition and generalization
apability as well and has to be considered when comparing the
est accuracies. To sum up the results, Fig. 8 shows the abso-
ute improvements of the test accuracies between both models
dRAEClass
ACC,te − η

ClassOnly
ACC,te as well as the relative improvements of the

est accuracies with additional correction of the different training
ccuracies

(
ηdRAEClass
ACC,te − η

ClassOnly
ACC,te

)
−

(
ηdRAEClass
ACC,tr − η

ClassOnly
ACC,tr

)
.

As it can be seen, the absolute improvement of the test accu-
racies of the dRAEClass model is roughly between 6% and 9% com-
pared to the ClassOnly model whereas the relative improvement
reduced to a range between 4% and 5%. It should be highlighted,
that the two-stage training approach even works, if the error
distribution of the approximated noisy training data X̂P does not
match the true error distribution of the test data X . For a better
P

7

ranking of the dRAEClass and ClassOnly model results, Table 7
compares the training and validation accuracies from Sections 4.3
and 4.4 with the classification accuracies of the benchmark ap-
proach from [3] . For this, a full PMU observability of the grid is
assumed as well as noise-free training and validation datasets.

It can be seen, that among all case studies the recurrent neural
network based dRAEClass and ClassOnly models can surpass the
benchmark model results.

Still, further evaluation studies are required to justify the
significance of the proposed model approach including the inte-
gration of larger power transmission systems, additional bench-
mark solutions and real PMU measurement datasets. Additional
experiments should also focus on the generalization capability
of the dRAEClass model to denoise arbitrary measurement errors
even in case of large deviations between the training and test data
(e.g. using techniques from domain adaptation). Also, an efficient
methodology should be developed for extracting noise param-
eters from real PMU measurements to adapt the optimization
based error model and to refine the classification model during
the application phase.
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