• English
  • Deutsch
  • Log In
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Towards graphical partially observable Monte-Carlo planning
 
  • Details
  • Full
Options
2016
Conference Paper
Titel

Towards graphical partially observable Monte-Carlo planning

Abstract
Sample-based online algorithms are state of the art for solving Partially Observable Markov Decision Problems (POMDP). But also the state of the art solver POMCP still suffers from the curse of dimensionality and curse of history. In Distributed POMDP, independent agents jointly optimise their actions under some coordination mechanism where every agent has access to a subset of the observations. In this work, we introduce Graphical POMDP (GPOMDP) drawing from existing Distributed POMDP appraoches as well as graph-based formulations as found in graphical probabilistic models. Further, we propose the Graphical POMCP (GPOMCP) algorithm that combines POMCP with message passing similar to the Belief Propagation (BP) algorithm from Graphical Probabilistic Models. In preliminary tests, GPOMCP shows good performance on a common Distributed POMDP benchmark.
Author(s)
Pfrommer, J.
Hauptwerk
Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory 2015. Proceedings
Konferenz
Fraunhofer Institute of Optronics, System Technologies and Image Exploitation and Institute for Anthropomatics, Vision and Fusion Laboratory (Joint Workshop) 2015
File(s)
N-417574.pdf (352.76 KB)
Language
English
google-scholar
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022