
Towards Graphical Partially Observable
Monte-Carlo Planning

Julius Pfrommer

Vision and Fusion Laboratory
Institute for Anthropomatics

Karlsruhe Institute of Technology (KIT), Germany
julius.pfrommer@kit.edu

Technical Report IES-2015-09

Abstract: Sample-based online algorithms are state of the art for solv-
ing Partially Observable Markov Decision Problems (POMDP). But also
the state of the art solver POMCP still suffers from the curse of dimen-
sionality and curse of history. In Distributed POMDP, independent agents
jointly optimise their actions under some coordination mechanism where
every agent has access to a subset of the observations. In this work, we in-
troduce Graphical POMDP (GPOMDP) drawing from existing Distributed
POMDP appraoches as well as graph-based formulations as found in graph-
ical probabilistic models. Further, we propose the Graphical POMCP
(GPOMCP) algorithm that combines POMCP with message passing similar
to the Belief Propagation (BP) algorithm from Graphical Probabilistic Mod-
els. In preliminary tests, GPOMCP shows good performance on a common
Distributed POMDP benchmark.

1 Introduction

Partially Observable Markov Decision Problems (POMDP) [KLC98] capture
planning scenarios with both nondeterministic system dynamics and uncer-
tainty about the current state. The Partially Observable Monte-Carlo Planning
(POMCP) algorithm [SV10] is a current state of the art technique for solving
POMDP. On some benchmarks, it led to several magnitudes of speed improve-
ments compared to previous point-based planning methods such as SARSOP
[KHL08]. A recent publication by Amato and Oliehoek [AO15] applies POMCP
to Distributed POMDP in the Dec-POMDP model. In this technical report, we
present preliminary findings on a novel variation of POMCP for Distributed



114 Julius Pfrommer

POMDP where value estimates are propagated in a graph structure representing
a decomposition of the POMDP. The resulting algorithm combines ideas from
POMCP and message-passing approaches from Graphical Probabilistic Models.

The paper is structured as follows: First, we present relevant background material
in Section 2. Then, in Section 3, we present the Graphical Partially Observable
Markov Decision (GPOMDP) model and in Section 4 the Graphical Partially Ob-
servable Monte-Carlo Planning (GPOMCP) algorithm. The runtime behavior of
the algorithm is evaluated based on a common benchmark scenario in Section 5.
The paper concludes in Section 6 with a summary and future outlook.

2 Background

2.1 Partially Observable Markov Decision Problems

Markov Decision Processes (MDP) represent scenarios for decision-making un-
der uncertainty where the system dynamics are dependent only on its current
state and chosen actions, but not on the past history that lead to the current
state [Put94]. Partially Observable Markov Decision Problems (POMDP) gen-
eralize MDP to situations where the underlying state is latent and can only
be observed indirectly [KLC98]. Partially Observable Monte-Carlo Decision
Problems (POMDP) are defined as n-tuples

〈V = S ∪A ∪R ∪O, {Xv}, P 0
S , PS , PO, R, T 〉 .

The variables v ∈ V are made up of the latent-state S, actions A, rewards R
and observations O. In every period t ∈ {1, . . . , T}, they take on a value from
a discrete domain in the state vector xt ∈ XV = ×v∈V Xv . For brevity, the
components of the state vector are referred to as st, at, rt and ot. Alternatively,
we index components with a subscript, e.g. xt

J for some set J ⊆ V . The initial
latent-state s0 is drawn from the distribution P 0

S . Afterwards, at the beginning of
every period t, the actions at are selected. The following latent-state, as well as
the resulting rewards and observations are drawn according to

PS(s
t+1 | st, at), rt = R(st, at, st+1), PO(o

t | st, at, st+1) .

The latent-state variables are not known to the choice-making entity and only the
history ht = (XA ×XR ×XO)

t−1 of previous actions, rewards and observations
can be used for action selection. Histories can be concatenated with values from



Towards GPOMCP 115

the current period and the empty history is written as ε. A policy π is a determin-
istic mapping from the history of previous periods to current actions. Rewards
are included in the history so that we may refer to them in algorithms that im-
prove policies based on sampled scenario rollouts. But rewards are treated as
unobservable for the policies themselves. The value of a policy is the expected
reward over the T periods given by Bellman’s equation. The goal of solving a
POMDP is to find a policy of maximum value.

V t
π(s

t, ht) = E


 ∑
ρ∈xt

R

ρ+
t<T

V t+1
π (st+1, htatrtot)

∣∣∣∣ at = π(ht)




V (π) =
∑
s∈XS

P 0
S(s)V

0
π (s, ε)

The so-called Q-value is defined as the expected rewards for choosing action a
after an observed history h and following the policy π afterwards.

Qt
π(h

t, at) =
∑
st

P (st |ht)E

[∑
r∈rt

r +
t<T

V t+1
π (st, htatrtot)

]

2.2 Monte-Carlo Tree Search and POMCP

Monte-Carlo Tree Search (MCTS) [BPW+12] is a recent approach to search for
an optimal policy in multi-period scenarios. MCTS cyclically generates example
rollouts and updates the estimation for the value of actions at a specific posi-
tion in the scenario tree. If the scenario is deterministic, then the scenario tree
has a branching factor according the number of possible action-choices in ev-
ery period. If the scenario is stochastic, then the possible state-transitions lead
to an additional branching. Algorithm 2.1 shows the generic MCTS algorithm
with rollout for POMDP scenarios. The performance of MCTS largely depends
on the selection of actions for exploration. The question is whether to select
actions that have shown good performance in the past, or whether to analyze
less-explored branches of the scenario tree that might contain some undiscovered
potential. Recently, the Upper-Confidence Bound (UCB) princple originally de-
veloped for bandit-games [ACBF02] has become a popular choice. In UCB,
actions are evaluated according to their past performance with an additional bias
that favors actions for which less empirical evidence is available.

Q̂[ha] + α

√
log(n[h])

n[ha]



116 Julius Pfrommer

Algorithm 2.1 The Monte-Carl Tree Search Algorithm with rollout for POMDP

1: procedure MCTS
2: INITIALIZE
3: while enough time do
4: h ← ROLLOUT
5: UPDATE(h)
6: end while
7: return BESTACTION
8: end procedure
1: procedure ROLLOUTPOMDP
2: h ← ε
3: s ∼ P 0

S

4: for t ∈ {1, . . . , T} do
5: a ← EXPLORATIONACTION(h)
6: s′ ∼ PS(s, a); r ← R(s, a, s′); o ∼ PO(s, a, s

′)
7: h ← haro
8: s ← s′

9: end for
10: return h
11: end procedure

Variables indexed with square brackets denote maps. The default value for any
index is zero. The map Q̂ contains estimations of Q-values and is updated after
every rollout. The counter n is increased by one every time a certain history oc-
curs during the rollouts. The exploration/exploitation tradeoff can be tuned with
the weighting parameter α. This leads to an exploration strategy that prunes less
promising branches implicitly. Still, convergence is guarantueed for many algo-
rithms employing UCB since every branch is visited infinitely often in the limit.
UCB-based exploration has led to huge performance increases for many game-
playing AIs, in particular those for games with large branching factors, such as
Go [GKS+12]. Partially Observable Monte-Carlo Planning (POMCP, [SV10])
is the application of UCB to solving POMDP in the MCTS framework (see Al-
gorithm 2.2). Note that the value estimation update in POMCP is relatively sim-
plistic. It just gives the average rewards experienced after a given history/action
combination during the rollouts. This converges to the actual Q-value of optimal
play since the UCB-based action selection will choose optimal actions infinitely
more often in the limit. More complex update mechanisms, e.g. updating beliefs
on the value of an action in a Bayesian setting, may lead to better estimations



Towards GPOMCP 117

Algorithm 2.2 The POMCP algorithm in the MCTS framework

1: procedure INITIALIZEPOMCP
2: n[ · ]← 0; Q̂[ · ]← 0
3: end procedure
1: procedure UPDATEPOMCP(h)
2: ρ← 0
3: for t ∈ {T, . . . , 1} do
4: ρ← ρ+

∑
r∈R x

t
r

5: n[ht]← n[ht] + 1
6: n[htat]← n[htat] + 1

7: Q̂[htat]← Q̂[htat] + ρ−Q̂[htat]
n[htat]

8: end for
9: end procedure
1: procedure EXPLORATIONACTIONPOMCP(h)
2: if ∃a : n[ha] = 0 then
3: return ∼ U({a : n[ha] = 0})
4: end if
5: return arg maxa Q̂[ha] + α

√
log(n[h])
n[ha]

6: end procedure
1: procedure BESTACTIONPOMCP
2: return arg maxa∈XA Q̂[a]
3: end procedure

2.3 Decentralized and Multiagent POMDP

Decentralized planning in POMDP settings requires superexponential time to
solve in the worst case [BGIZ02]. Thus, recent work has focused on heuristic
solvers and specific classes of Distributed POMDP where some underlying struc-
ture can be exploited. Examples for such models are ND-POMDP [NVTY05],
Dec-POMDP [OSWV08] and I-POMDP [GD05]. Readers are referred to [SZ08]

for a given set of samples. However, empirical evidence shows an advantage for
algorithms with fast updates that process more rollout/update cycles for the same
computational effort. Competitive implementations of POMCP process several
hundred thousand rollouts per second.



118 Julius Pfrommer

for an in-depth discussion and equivalence results. A comparison between Dec-
POMDP, ND-POMDP and our approach GPOMDP is given at the end of the
following section.

3 Graphical POMDP

Graphical POMDP (GPOMDP) are defined as n-tuples comprised of a standard
POMDP with an additional set of agents I .

〈V = S ∪A ∪R ∪O, {Xv}, P 0
S , PS , PO, R, T, I〉 .

Agents I ∈ 2V are choice-making entities. Every agent i ⊆ V \ S has access to
a subset of the actions Ai = A ∩ i, rewards Ri = R ∩ i and observations Oi =
O ∩ i. Agents may overlap by sharing some variables (i, j) ∈ I2,∆ij = i ∩ j.
Overlapping agents are in the set of neighbours N(i) = {j ∈ I : ∆ij 
= ∅}. In
distributed settings, variable sharing can be achieved via lossless communication
of action choices and observations. Every agent i has access to a reduced history
ht
i ∈ (Xi)

t−1 in time period t. The action-choices are made by either assigning
disjoint controlled actions AC

i ⊆ Ai and local policies πt
i : (Xi)

t−1 → XAC
i

to
every agent or via some additional online coordination mechanism.

Relation to Dec-POMDP In Decentralized POMDP (Dec-POMDP)
[BGIZ02], all action and observation variables are assigned to exactly one agent,
so that A = ×iAi, O = ×iOi. Agents have access to their own actions and
observations only. So all Dec-POMDP are GPOMDP, but GPOMDP are Dec-
POMDP if and only if all agents are disjoint, i.e. ∀(i, j) ∈ I2, i 
= j ⇒ i∩j = ∅.
However, it is possible to construct additional actions and observations in Dec-
POMDP in a way that mimicks communication channels between agents [SZ08].
In consequence, for any given GPOMDP, a Dec-POMDP can be constructed that
recovers sharing of actions via communication channels. Shared observations
can be achieved by duplication of observation variables P (xo′ |xo) = δ{xo′=xo}.
This structure is however lost in the general Dec-POMDP and has to be
rediscovered by the solvers.

Relation to ND-POMDP Networked Distributed POMDP (ND-POMDP)
[NVTY05]) factorize the latent-state so that the variables are either controlled
by exactly one agent or are unobservable S = ×iSi × Su. Action and observa-
tion variables are each assigned to a unique agent, so that A = ×iAi, O = ×iOi.



Towards GPOMCP 119

The agents are transition and observation independent and coupled only by the
reward function.

P (st+1 | st, at) = P (st+1
u | stu)

∏
i∈I

P (st+1
i | sti, ati)

P (ot | st, at) =
∏
i∈I

P (oti | stu, sti, ati)

R(s, a) =
∑
c∈C

Rc(u, sc, ac)

The reward function R in ND-POMDP is made up of components that depend
on a cluster of agents C ∈ 2I . With a slight abuse of notation, the latent-state of
a cluster is sc ∈ ×v∈∪ciXv and similarle for actions. The resulting locality of
interaction between agents is characterized by a graph GC = (I, C := {(i, j) ∈
I2 : ∃c ∈ C, i ∈ c, j ∈ c}). Most papers assuming the ND-POMDP model
further allow agents to communicate observations with some or all the other
agents. According to this definition, all ND-POMDP are GPOMDP. The reverse
is not necessarily true, since GPOMDP do not impose transition and observation
independence between agents.

4 Graphical POMCP

We now introduce the Graphical Partially Observable Monte-Carlo Planning
(GPOMCP) algorithm for solving GPOMDP online in a distributed fashion. It
draws from two main sources of inspiration: The POMCP algorithm [SV10],
one of the state of the art online POMDP solvers, and message-passing ap-
proaches based on the Generalized Distributive Law (GDL) [AM00, KFL01].
Variants of the latter are known for example the Belief Propagation (BP) al-
gorithm [Pea88] in Graphical Probabilistic Models and the Max-Plus algorithm
used for Distributed Constraint Optimization (DCOP) [PF05].

Assume a GPOMDP where the agents form a hypergraph tree H = (I, E) with
agents as vertices and neighborhood relations as edges E = {(i, j) ∈ I2 : j ∈
N(i)}. This assumption is motivated by BP, where convergence is also only
guaranteed on trees. Still, BP on loopy graphs often achieves good results in
practice [YFW+00]. The theoretical insight and empirical evidence to draw the
analogy for GPOMCP is however not in the scope of this contribution. Since
the visible actions Ai overlap, agents can select contradicting sets of actions. In
Algorithm 4.1 this is resolved by giving precedence to agents who make their



120 Julius Pfrommer

Algorithm 4.1 Action selection in GPOMCP

1: procedure EXPLORATIONACTIONGPOMCP(h)
2: xA ∈ XA
3: for i ∈ I do
4: y

Ai
← AGENTEXPLORATIONACTIONGPOMCP(i, hi)

5: for a ∈ Ai do
6: xa ← ya
7: end for
8: end for
9: return xA

10: end procedure
1: procedure AGENTEXPLORATIONACTIONGPOMCP(i, hi)
2: if ∃ai : n[hiai] = 0 then
3: return ∼ U({ai : n[hiai] = 0})
4: end if
5: return arg maxai Q̂i[hiai] + α

√
log(n[hi])
n[hiai]

6: end procedure
1: procedure BESTACTIONGPOMCP(h)
2: xA ∈ XA
3: for i ∈ I do
4: y

Ai
← arg maxai Q̂i[hiai]

5: for a ∈ Ai do
6: xa ← ya
7: end for
8: end for
9: return xA

10: end procedure

choice later. That is necessary, since the UCB-based action selection may other-
wise lead to situations where two agents have each a strong preference for differ-
ent but overlapping set of actions. Selecting a mixture of the two action sets can
lead to a blocking situations where the same actions are selected indefinitely in a
row as both agents were not able to see the action for which they have a strong
preference. By giving precedence to later agents, at least one agent gets to see
the results of his preferred action set and will eventually move on to a different
choice.



Towards GPOMCP 121

The update procedure of the POMCP algorithm consists of a message passing and
an estimation update phase. The message passing phase uses a forward/backward
schedule. Recall that the agents form a tree hyper-graph. The schedule S(I) con-
tains an ordered list of sender/receiver relations where the agents i wait until they
have received messages from their |N(i)| − 1 children in the graph. Then they
send out a messages to their parent. Once they have received a message from their
parent, messages are sent out to all children. This is called the forward/backward
schedule since the message exchange starts at the leaf of the tree, propagates
through the graph and finally returns to the leafs. Note that the schedule can
be efficiently implemented to run in parallel on distributed agents. But we omit
discussing this possibility in this text.

Algorithm 4.2 Initialization and estimation update in GPOMCP

1: procedure INITIALIZEGPOMCP(I)
2: n[ · ] ← 0

3: ∀i ∈ I, R̂i[ · ] ← 0, Q̂i[ · ] ← 0
4: ∀i ∈ I, ∀j ∈ N(i), nij [ · ] ← 0, mi→j [ · ] ← 0
5: end procedure
1: procedure UPDATEGPOMCP(h)
2: ∀i ∈ I, ρi ← 0
3: ∀i ∈ I, ∀j ∈ N(i), ρij ← 0
4: for t ∈ {T, . . . , 1} do
5: for (i, j) ∈ S(I) do
6: ρij ← ρij +

∑
r∈(R∩Oi)\∆ij

xt
r

7: nij [h
t
ija

t
ij ] ← nij [h

t
ija

t
ij ] + 1

8:
mi→j [h

t
ija

t
ij ] ← mi→j [h

t
ija

t
ij ] +

(ρij+
∑

l∈N(i)\j ml→i[h
t
ila

t
il])−mi→j [h

t
ija

t
ij ]

nij [ht
ija

t
ij ]

9: end for
10: for i ∈ I do
11: ρi ← ρi +

∑
r∈R∩Oi

xt
r

12: n[ht
i] ← n[ht

i] + 1
13: n[ht

ia
t
i] ← n[ht

i, a
t
i] + 1

14: R̂i[h
t
ia

t
i] ← R̂i[h

t
ia

t
i] +

ρi−R̂i[h
t
ia

t
i]

n[ht
ia

t
i]

15: Q̂i[h
t
ia

t
i] ← R̂i[h

t
ia

t
i] +

∑
j∈N(i) mj→i[h

t
ija

t
ij ]

16: end for
17: end for
18: end procedure



122 Julius Pfrommer

Figure 5.1: Illustration of the Firefighting benchmark problem taken from [OSWV08]

Similar to POMCP, the reward from the later periods is accumulated in a scalar
ρi. However, ρi takes only the rewards into account that are visible to the agent
i. In addition, we accumulate a set of summed rewards ρij for every neighbour
with the rewards that were visible to i, but not to the neigbhour j ∈ N(i). The
message from agent i to agent j then becomes an estimate for the amount of
rewards the subtree behind the edge (i, j) is expected to receive during the current
period and afterwards, conditioned on the joint history htij ∈ (X∆ij

)t and action
aij ∈ XA∩∆ij

. The messages and the locally visible rewards are then used to
update the local estimates for the true Q-Value.

5 Benchmark Results

We compare our results on the Firefighting domain introduced in [OSWV08]. It
models a team of n firefighters that have to extinguish fires in a row of nH = n+1
houses. In this work, we will take n = 8 and T = 3. Each house H has a fire
level lH ∈ {0, . . . , 2}. The latent-state is an assignment of fire levels to every
house. See Figure 5.1 for an illustration of the scenario.

At every time step, each firefighter f can choose to fight fires at house f or f +1.
If a house H is burning (lH > 0) and no firefighting agent is present, its fire level
will increase by one point with probability 0.8 if any of its neighboring houses
are burning, and with probability 0.4 if none of its neighbors are on fire. A house
that is not burning can only catch fire with probability 0.8 if one of its neighbors
is on fire. When two firefighters are at the same house, they will extinguish
any present fire completely, setting the house’s fire level to zero. A single agent
present at a house will lower the fire level by one point with probability 1 if no
neighbors are burning, and with probability 0.6 otherwise. Each firefighter can
only observe whether there is a fire or not at its location. Fire is observed with



Towards GPOMCP 123

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
·104

47

48

49

50

Number of exchanged messages

To
ta

lr
ew

ar
ds

POMCP [SV10]
FT-FV-MPOMDP [AO15]
GPOMCP

Figure 5.2: Benchmark results of the firefighting scenario.

probability 0.2 if lH = 0, with probability 0.5 if lH = 1, and with probability
0.8 otherwise. Rewards are 2 − lH for each house according to the burn level
reached in that period. Initially, the fire level lH of each house is drawn from a
uniform distribution. Each firefighter is represented by an agent that perceives
the actions, rewards and observations of himself and of his neighbours f − 1 and
f + 1 if they exist.

Figure 5.2 compares the performance of three approaches in the firefighting
benchmark scenario. In all cases, we estimate Q-values with the given num-
ber of rollouts. Then, the resulting performance is evaluated as the mean reward
of 500 rollouts where we choose the action with maximum estimated Q-value
in every period. The first appraoch employs standard POMCP where all actions,
rewards and observations are visible to a central learning an planning entity. The
second approach is the FT-FV-MPOMDP algorithm from [AO15] where the first
application of MCTS to Dec-POMDP in was given. The factored tree (FT) ver-
sion of their algorithm is equal to GPOMCP when omitting the message passing
step, therefore having each agent build up a separate evaluation. The last ap-
proach compared in the benchmark is our GPOMCP. All algorithms ran with an
exploration weight factor of α = 10.

The benchmark shows the results for running the rollout and update step for the
given number of repetitions and then using the resulting Q-value estimates to
guide the action selection during the T periods. Comparing the algorihtms in a
pure online-planning scenario is planned for the near future.It can be seen that
GPOMCP outperforms the other algorithms in the firefighting scenario. Both
GPOMCP and FV-POMCP converge to a stable solution within 50,000 rollouts.



124 Julius Pfrommer

However, GPOMCP achieves a substantially better solution. This is due to the
coordination where agents also consider expected rewards even in parts of the
POMDP that are not visible to them. The convergence of POMCP is even slower
than what the graph indicates since POMCP has to iterate over all possible joint
actions in every period. Since the number of joint actions grows exponentially in
the number of action variables, the rollouts are computationally more expensive
for POMCP.

6 Summary

In this contribution, we presented the Graphical Partially Observable Markov
Decision Problem (GPOMDP) to capture the structure of Distributed POMDP
where agents may overlap in their observable variables. Whe further introduced
an algorithm for solving GPOMDP based on the well-known POMCP algorithm
[SV10] and the message passing approach known from Graphical Probabilistic
Models. First empirical evidence hints at favorable convergence properties for
factorizable POMDP. Future work will apply GPOMCP to further benchmark
problems from the literature and characterise its theoretical properties. Further-
more, we intend to apply GPOMCP to problems with continuous state and action
spaces according to the principles developed in [BDMB13].

Bibliography

[ACBF02] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the
multiarmed bandit problem. Machine learning, 47(2-3):235–256, 2002.

[AM00] Srinivas M Aji and Robert J McEliece. The generalized distributive law. Information
Theory, IEEE Transactions on, 46(2):325–343, 2000.

[AO15] Christopher Amato and Frans A Oliehoek. Scalable Planning and Learning for
Multiagent POMDPs. In Twenty-Ninth AAAI Conference on Artificial Intelligence,
2015.

[BDMB13] Lucian Busoniu, Andrew Daniels, Rémi Munos, and Robert Babuska. Optimistic
planning for continuous-action deterministic systems. In Adaptive Dynamic Pro-
gramming And Reinforcement Learning (ADPRL), 2013 IEEE Symposium on, pages
69–76. IEEE, 2013.

[BGIZ02] Daniel S Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. The
complexity of decentralized control of markov decision processes. Mathematics of
operations research, 27(4):819–840, 2002.

[BPW+12] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Pe-
ter I Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon



Towards GPOMCP 125

Samothrakis, and Simon Colton. A survey of monte carlo tree search methods.
Computational Intelligence and AI in Games, IEEE Transactions on, 4(1):1–43,
2012.

[GD05] Piotr J Gmytrasiewicz and Prashant Doshi. A framework for sequential planning in
multi-agent settings. Journal of Artificial Intelligence Research, pages 49–79, 2005.

[GKS+12] Sylvain Gelly, Levente Kocsis, Marc Schoenauer, Michele Sebag, David Silver,
Csaba Szepesvári, and Olivier Teytaud. The grand challenge of computer go: Monte
carlo tree search and extensions. Communications of the ACM, 55(3):106–113, 2012.

[KFL01] Frank R Kschischang, Brendan J Frey, and H-A Loeliger. Factor graphs and the
sum-product algorithm. Information Theory, IEEE Transactions on, 47(2):498–519,
2001.

[KHL08] Hanna Kurniawati, David Hsu, and Wee Sun Lee. Sarsop: Efficient point-based
pomdp planning by approximating optimally reachable belief spaces. In Robotics:
Science and Systems, volume 2008. Zurich, Switzerland, 2008.

[KLC98] Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and
acting in partially observable stochastic domains. Artificial intelligence, 101(1):99–
134, 1998.

[NVTY05] Ranjit Nair, Pradeep Varakantham, Milind Tambe, and Makoto Yokoo. Networked
distributed pomdps: A synthesis of distributed constraint optimization and pomdps.
In AAAI, volume 5, pages 133–139, 2005.

[OSWV08] Frans A Oliehoek, Matthijs TJ Spaan, Shimon Whiteson, and Nikos Vlassis. Ex-
ploiting locality of interaction in factored dec-pomdps. In Proceedings of the 7th in-
ternational joint conference on Autonomous agents and multiagent systems-Volume
1, pages 517–524. International Foundation for Autonomous Agents and Multiagent
Systems, 2008.

[Pea88] Judea Pearl. Probabilistic reasoning in intelligent systems: Networks of plausible
inference. 1988.

[PF05] Adrian Petcu and Boi Faltings. DPOP: A Scalable Method for Multiagent Constraint
Optimization. In Proceedings of the International Joint Conferences on Artificial
Intelligence (IJCAI), pages 266–271, 2005.

[Put94] Martin L Puterman. Markov decision processes: Discrete stochastic dynamic
programming. 1994.

[SV10] David Silver and Joel Veness. Monte-carlo planning in large pomdps. In Advances
in neural information processing systems, pages 2164–2172, 2010.

[SZ08] Sven Seuken and Shlomo Zilberstein. Formal models and algorithms for decen-
tralized decision making under uncertainty. Autonomous Agents and Multi-Agent
Systems, 17(2):190–250, 2008.

[YFW+00] Jonathan S Yedidia, William T Freeman, Yair Weiss, et al. Generalized belief
propagation. In NIPS, volume 13, pages 689–695, 2000.




