• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. The effect of surface grain reversal on the AC losses of sintered Nd-Fe-B permanent magnets
 
  • Details
  • Full
Options
2015
Journal Article
Title

The effect of surface grain reversal on the AC losses of sintered Nd-Fe-B permanent magnets

Abstract
Sintered Nd-Fe-B magnets are exposed to AC magnetic fields in many applications, e.g. in permanent magnet electric motors. We have measured the AC losses of sintered Nd-Fe-B magnets in a closed circuit arrangement using AC fields with root mean square-values up to 80 mT (peak amplitude 113 mT) over the frequency range 50 to 1000 Hz. Two magnet grades with different dysprosium content were investigated. Around the remanence point the low grade material (1.7 wt% Dy) showed significant hysteresis losses; whereas the losses in the high grade material (8.9 wt% Dy) were dominated by classical eddy currents. Kerr microscopy images revealed that the hysteresis losses measured for the low grade magnet can be mainly ascribed to grains at the sample surface with multiple domains. This was further confirmed when the high grade material was subsequently exposed to DC and AC magnetic fields. Here a larger number of surface grains with multiple domains are also present once the step i n the demagnetization curve attributed to the surface grain reversal is reached and a rise in the measured hysteresis losses is evident. If in the low grade material the operating point is slightly offset from the remanence point, such that zero field is not bypassed, its AC losses can also be fairly well described with classical eddy current theory.
Author(s)
Moore, M.
Roth, S.
Gebert, A.
Schultz, L.
Gutfleisch, O.
Journal
Journal of magnetism and magnetic materials  
DOI
10.1016/j.jmmm.2014.09.047
Language
English
Fraunhofer-Institut für Silicatforschung ISC  
Fraunhofer-Einrichtung für Wertstoffkreisläufe und Ressourcenstrategie IWKS  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024