• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Surface depassivation via B-O dative bonds affects the friction performance of B-doped carbon coatings
 
  • Details
  • Full
Options
2024
Journal Article
Title

Surface depassivation via B-O dative bonds affects the friction performance of B-doped carbon coatings

Abstract
Boron doping of diamond-like carbon coatings has multiple effects on their tribological properties. While boron typically reduces wear in cutting applications, some B-doped coatings show poor tribological performance compared with undoped films. This is the case of the tribological tests presented in this work in which an alumina ball is placed in frictional contact with different undoped and B-doped amorphous carbon coatings in humid air. With B-doped coatings, a higher friction coefficient at a steady state with respect to their undoped counterparts was observed. Estimates of the average contact shear stress based on experimental friction coefficients, surface topographies, and Persson’s contact theory suggest that the increased friction is compatible with the formation of a sparse network of interfacial ether bonds leading to a mild cold-welding friction regime, as documented in the literature. Tight binding and density functional theory simulations were performed to investigate the chemical effect of B-doping on the interfacial properties of the carbon coatings. The results reveal that OH groups that normally passivate carbon surfaces in humid environments can be activated by boron and form B-O dative bonds across the tribological interfaces, leading to a mild cold-welding friction regime. Simulations performed on different tribological pairs suggest that this mechanism could be valid for B-doped carbon surfaces in contact with a variety of materials. In general, this study highlights the impact that subtle modifications in surface and interface chemistry caused by the presence of impurities can have on macroscopic properties, such as friction and wear.
Author(s)
Peeters, Stefan
Fraunhofer-Institut für Werkstoffmechanik IWM  
Kuwahara, Takuya  
Fraunhofer-Institut für Werkstoffmechanik IWM  
Härtwig, Fabian
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Makowski, Stefan  
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Weihnacht, Volker  
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Lasagni, Andrés-Fabián  
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Dienwiebel, Martin  
Fraunhofer-Institut für Werkstoffmechanik IWM  
Moseler, Michael  
Fraunhofer-Institut für Werkstoffmechanik IWM  
Moras, Gianpietro  
Fraunhofer-Institut für Werkstoffmechanik IWM  
Journal
ACS applied materials & interfaces  
Project(s)
Projekt zur CHEmisch-PHysikalischen Reduzierung der ReibungsENergie; Teilvorhaben: Ultraglatte und supraschmierende Schichten für Komponentenanwendungen und Simulation nanohydrodynamischer Mechanismen der Reibreduktion  
Weiterentwicklung der Tribometrie zur Erforschung und Validierung supraniedriger Reibungsphänomene  
Tribologisch induzierte Grenzflächen- und Strukturveränderungsprozesse in Trockenschmiersystemen unter definierten Atmosphären  
PREPARE
Funder
Bundesministerium für Wirtschaft und Klimaschutz -BMWK-
Bundesministerium für Wirtschaft und Klimaschutz -BMWK-
Deutsche Forschungsgemeinschaft -DFG-, Bonn  
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.  
Open Access
DOI
10.1021/acsami.3c18803
Additional full text version
Landing Page
Language
English
Fraunhofer-Institut für Werkstoffmechanik IWM  
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Fraunhofer Group
IWS 21150 Schichtcharakterisierung
Keyword(s)
  • diamond-like carbon

  • boron doping

  • friction tribology

  • dative bond

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024