Now showing 1 - 4 of 4
  • Publication
    Switching Dynamical Systems with Deep Neural Networks
    The problem of uncovering different dynamical regimes is of pivotal importance in time series analysis. Switching dynamical systems provide a solution for modeling physical phenomena whose time series data exhibit different dynamical modes. In this work we propose a novel variational RNN model for switching dynamics allowing for both non-Markovian and nonlinear dynamical behavior between and within dynamic modes. Attention mechanisms are provided to inform the switching distribution. We evaluate our model on synthetic and empirical datasets of diverse nature and successfully uncover different dynamical regimes and predict the switching dynamics.
  • Publication
    Auto Encoding Explanatory Examples with Stochastic Paths
    In this paper we ask for the main factors that determine a classifiers decision making process and uncover such factors by studying latent codes produced by auto-encoding frameworks. To deliver an explanation of a classifiers behaviour, we propose a method that provides series of examples highlighting semantic differences between the classifiers decisions. These examples are generated through interpolations in latent space. We introduce and formalize the notion of a semantic stochastic path, as a suitable stochastic process defined in feature (data) space via latent code interpolations. We then introduce the concept of semantic Lagrangians as a way to incorporate the desired classifiers behaviour and find that the solution of the associated variational problem allows for highli ghting differences in the classifier decision. Very importantly, within our framework the classifier is used as a black-box, and only its evaluation is required.
  • Publication
    Learning Deep Generative Models for Queuing Systems
    Modern society is heavily dependent on large scale client-server systems with applications ranging from Internet and Communication Services to sophisticated logistics and deployment of goods. To maintain and improve such a system, a careful study of client and server dynamics is needed e.g. response/service times, aver-age number of clients at given times, etc. To this end, one traditionally relies, within the queuing theory formalism, on parametric analysis and explicit distribution forms. However, parametric forms limit the models expressiveness and could struggle on extensively large datasets. We propose a novel data-driven approach towards queuing systems: the Deep Generative Service Times. Our methodology delivers a flexible and scalable model for service and response times. We leverage the representation capabilities of Recurrent Marked Point Processes for the temporal dynamics of clients, as well as Wasserstein Generative Adversarial Network techniques, to learn deep generative models which are able to represent complex conditional service time distributions. We provide extensive experimental analysis on both empirical and synthetic datasets, showing the effectiveness of the proposed models.
  • Publication
    Recurrent Adversarial Service Times
    Service system dynamics occur at the interplay between customer behaviour and a service provider's response. This kind of dynamics can effectively be modeled within the framework of queuing theory where customers' arrivals are described by point process models. However, these approaches are limited by parametric assumptions as to, for example, inter-event time distributions. In this paper, we address these limitations and propose a novel, deep neural network solution to the queuing problem. Our solution combines a recurrent neural network that models the arrival process with a recurrent generative adversarial network which models the service time distribution. We evaluate our methodology on various empirical datasets ranging from internet services (Blockchain, GitHub, Stackoverflow) to mobility service systems (New York taxi cab).