• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Auto Encoding Explanatory Examples with Stochastic Paths
 
  • Details
  • Full
Options
May 5, 2021
Conference Paper
Title

Auto Encoding Explanatory Examples with Stochastic Paths

Abstract
In this paper we ask for the main factors that determine a classifiers decision making process and uncover such factors by studying latent codes produced by auto-encoding frameworks. To deliver an explanation of a classifiers behaviour, we propose a method that provides series of examples highlighting semantic differences between the classifiers decisions. These examples are generated through interpolations in latent space. We introduce and formalize the notion of a semantic stochastic path, as a suitable stochastic process defined in feature (data) space via latent code interpolations. We then introduce the concept of semantic Lagrangians as a way to incorporate the desired classifiers behaviour and find that the solution of the associated variational problem allows for highli ghting differences in the classifier decision. Very importantly, within our framework the classifier is used as a black-box, and only its evaluation is required.
Author(s)
Ojeda, César  
TU Berlin
Sánchez, Ramsés J.
Uni Bonn
Cvejoski, Kostadin  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Schücker, Jannis  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Bauckhage, Christian  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Georgiev, Bogdan  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Mainwork
ICPR 2020, 25th International Conference on Pattern Recognition. Proceedings  
Project(s)
ML2R
Funder
Bundesministerium für Bildung und Forschung -BMBF-  
Conference
International Conference on Pattern Recognition (ICPR) 2021  
DOI
10.1109/ICPR48806.2021.9413267
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Keyword(s)
  • interpolation

  • semantics

  • decision making

  • stochastic processes

  • focusing

  • encoding

  • pattern recognition

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024