• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Switching Dynamical Systems with Deep Neural Networks
 
  • Details
  • Full
Options
May 5, 2021
Conference Paper
Title

Switching Dynamical Systems with Deep Neural Networks

Abstract
The problem of uncovering different dynamical regimes is of pivotal importance in time series analysis. Switching dynamical systems provide a solution for modeling physical phenomena whose time series data exhibit different dynamical modes. In this work we propose a novel variational RNN model for switching dynamics allowing for both non-Markovian and nonlinear dynamical behavior between and within dynamic modes. Attention mechanisms are provided to inform the switching distribution. We evaluate our model on synthetic and empirical datasets of diverse nature and successfully uncover different dynamical regimes and predict the switching dynamics.
Author(s)
Ojeda, César  
TU Berlin
Georgiev, Bogdan  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Cvejoski, Kostadin  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Schücker, Jannis  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Bauckhage, Christian  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Sánchez, Ramsés J.
Uni Bonn
Mainwork
ICPR 2020, 25th International Conference on Pattern Recognition. Proceedings  
Project(s)
ML2R  
Funder
Bundesministerium für Bildung und Forschung -BMBF-
Conference
International Conference on Pattern Recognition (ICPR) 2021  
DOI
10.1109/ICPR48806.2021.9412566
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Keyword(s)
  • time series analysis

  • neural networks

  • switches

  • predictive models

  • data models

  • pattern recognition

  • dynamical system

  • Neural Nets

  • nonlinear dynamical systems

  • recurrent neural networks

  • time series

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024