Now showing 1 - 10 of 146
  • Publication
    Additive manufacturing of precision cemented carbide parts
    ( 2021) ; ;
    Lahoda, Christian
    ;
    Hocke, Toni
    ;
    Cemented carbide parts are commonly used as wear resistance components in a broad range of industry, e.g. for forming, mould making and matrices. At state of the art the machining of precision cemented carbide components by milling is strongly limited due to excessive tool wear and long machining times. Promising approaches for precision machining of cemented carbide components are dedicated cutting tool coatings, new cutting materials like binderless polycrystalline diamond and ultrasonic-assisted machining. Nevertheless, for all these approaches the components need to be machined of monolithic materials. The new approach addresses an innovative manufacturing process chain composed of near net shape Additive Manufacturing followed by a precision finishing process. Within this investigations for the manufacturing of precision cemented carbide parts, cemented carbide with a cobalt content of 17 % and a grain size in a range of 23 µm ⤠gs ⤠40 µm were used. As Addit ive Manufacturing technology laser powder bed fusion was used. Diamond slide burnishing and immersed tumbling were investigated as finishing technologies. Based on the investigations, a dedicated process chain for the manufacturing of precision cemented carbide parts could be realised. The findings show that the developed process chain composed of near net shape Additive Manufacturing and the finishing process diamond slide burnishing enables the manufacturing of precision cemented carbide parts with a geometrical accuracy of ag ⤠10 µm. Due to the finishing process the initial surface roughness after Additive Manufacturing could reduce by Ra = 89 %.
  • Publication
    Particle contact conditions for cutting edge preparation of micro-milling tools by the immersed tumbling process
    For increasing tool life and cutting length of micro-milling tools the cutting edge preparation was successfully established. Using the immersed tumbling process, a reproducible cutting edge preparation with constant cutting edge radii as well as low chipping of the cutting edges can be realised. For a profound understanding of the preparation process and the process mechanisms further knowledge about the particle interactions with cutting tools as well as the particle flow mechanisms needs to be obtained. In this investigation the preparation process of micro-milling tools was analysed and the contact-mechanisms as well as the resulting pressures were investigated by simulation studies. Using the discrete element method (DEM) with the software ROCKY DEM from the company ESSS, Florianópolis, Brasil, the immersed tumbling process could be modelled and particle contacts, particle traces as well as particle interactions with the micro-milling tool can be visualized. Especially the particle-tool interactions were more accurately investigated by analysing the stresses and particles shear work as well as correlations between these parameters to prove the comparability between the process simulation and the real preparation process.
  • Publication
    Reduction of erosion duration for electrical discharge drilling using a nature analogue algorithm with nested strategy types
    The required high economic efficiency, combined with the corresponding high quality demands, in the aerospace industry as well as in mould and tool making, motivate the necessity of finding suitable parameter combinations for the process of electrical discharge machining (EDM), e.g. when introducing new materials. To counteract this, various methods are being investigated in research for the optimisation of EDM. One new method is the stochastic optimisation procedure evolution strategy (ES). Due to its metaheuristic approach, this optimisation method is excellently suited for very complex processes in which the interrelationship of the individual influencing variables is not known. This publication presents the results of the investigation of the suitability of the ES optimisation method using the example of electrical discharge drilling. For this purpose, two nested ES-types were investigated. The electrode materials used were brass for the tool and stainless steel X5C rNi18-1 for the workpiece. As a result, the erosion duration could be reduced by 30 %. This investigation forms the basis for the use of nested ES types in electrical discharge drilling.
  • Publication
    Cutting edge preparation of monolithic ceramic milling tools
    Due to international competition, continuous increases in productivity, product quality and reduction of production costs are required. Especially, the development of milling tools made of innovative cutting materials and application-specific tool geometries for the machining of brittle materials are in focus to overcome these challenges. One approach to improve the performance and the tool behaviour concerning milling of graphite is the use of monolithic ceramic milling tools. Unfortunately, the high brittleness of the ceramic leads to breakouts on the cutting edge during the grinding process. This results in an increased maximum chipping of the cutting edge, which has a significant influence on the milling process. To improve the breakout behaviour, a cutting edge preparation with the immersed tumbling process was applied. To enable a process reliable cutting edge preparation, a suitable lapping medium, the influence of the processing time as well as the depth of imme rsion were investigated. Besides the maximum chipping of the cutting edge, the rounded cutting edge radius was also analysed. The results show that a process reliable cutting edge preparation of monolithic ceramic milling tools with a maximum chipping of the cutting edge RS,max ⤠3 µm and a rounded cutting edge radius of rβ ⤠7 µm could be realised. In future investigations, the experimental applicability of monolithic ceramic milling tools will be proved.
  • Publication
    Improved surface generation of multi-material objects in computed tomography using local histograms
    ( 2021) ; ;
    Kayser, Nicolas
    ;
    Dürre, Gregor
    During the last decade industrial computed tomography (iCT) has become one of the most important metrological procedures for internal inspection, where it sees wide-spread use in injection molding and additive manufacturing. Evaluating the CT volume data of multi-material objects represents a major technical challenge. Due to artifacts caused by beam hardening, an over-segmentation of strongly absorbing materials occurs, severely limiting the accuracy of dimensional measurements. The goal of the project presented is the development of an innovative artifact-reduced multi-material segmentation. This is applied to and tested on various complex reconstructed CT data sets. Global approaches show high signal-to-noise-ratio (SNR) but are not able to compensate for local deviations. For smaller volumes the data sets become more consistent, but the SNR decreases due to the reduced data volume. Thus, a more localized approach for the volume image data has the potential to provid e results of higher accuracy. With this newly presented algorithm it is now possible to perform segmentation of all materials, while eliminating over-segmentation errors as well as local noise artifacts almost completely for all tested datasets.
  • Publication
    Analysis and recycling of bronze grinding waste to produce maritime components using directed energy deposition
    ( 2021) ;
    Marko, Angelina
    ;
    Kruse, Tobias
    ;
    ;
    Additive manufacturing promises a high potential for the maritime sector. Directed Energy Deposition (DED) in particular offers the opportunity to produce large-volume maritime components like propeller hubs or blades without the need of a costly casting process. The post processing of such components usually generates a large amount of aluminum bronze grinding waste. The aim of the presented project is to develop a sustainable circular AM process chain for maritime components by recycling aluminum bronze grinding waste to be used as raw material to manufacture ship propellers with a laser-powder DED process. In the present paper, grinding waste is investigated using a dynamic image analysis system and compared to commercial DED powder. To be able to compare the material quality and to verify DED process parameters, semi-academic sample geometries are manufactured.
  • Publication
    Simulation and compensation of the thermal behaviour of industrial robots
    Industrial robot systems offer a flexible, adaptable basis due to their kinematics and their mobility. An influencing variable, which is particularly relevant for processes with long process times tP, is the thermal heating and the associated thermal drift ÎAPt of the tool center point. The maximum deviation from the actual nominal position can reach up to ÎAPt = 1.5 mm. In the investigations, a simulation model for an industrial robot was created and the thermal behaviour was mapped. With this model, the thermal error ÎAPt within the working area can be determined as a function of the current position X and temperature Ï. These data can be used for a targeted correction of the robot path. With the correction by the compensation model the amount of drift for real milling processes could be reduced to a value of ÎAPt = 0.042 mm. The results can help to reduce the influence of thermal heating and the associated thermal drift ÎAPt of the TCP without using cost-intens ive measures with additional hardware and software on external computers for compensating the errors.
  • Publication
    Service Modelling Language Applied for Hyper Connected Ecosystem
    ( 2021) ;
    Zelm, Martin
    ;
    Chen, David
    The paper elaborates the application of service modelling language for hyper-connected ecosystems. A specific target is to demonstrate the use of ISO 19440 standard together with a set of specialized service modelling constructs developed in the scope of CEN TC310/WG1. It presents a conceptual use case to model a 'Matching Service' and the service system required to provide the Matching Service in a service ecosystem. The purpose of this study is to test and demonstrate the use of a service modelling language related to ISO19440:2020 to describe in a formal and systematic way a service and its needed service system at business level for communication and validation. The paper first presents the motivation of the study and recalls related works. The service modelling language and the background of this work are discussed. The Matching service use case will be presented in detail and the concluding summary as well as some outlooks are given at the end of the paper.
  • Publication
    Inertial Measurement Unit based Human Action Recognition for Soft-Robotic Exoskeleton
    ( 2021) ;
    Burgdorff, Moritz
    ;
    Filaretov, Hristo
    ;
    Absence from work caused by overloading the musculoskeletal system lowers the life quality of the worker and gains unnecessary costs for both the employer and the health system. Exoskeletons can present a solution. Typically, such systems struggle with stiffness and discomfort and primarily a lack of battery lifetime. Soft-robotic exoskeletons offer a possibility to overcome these problems by increasing the system flexibility, not limiting the supported DoF and being actuator and joint together. Since soft-robotic exoskeletons can be designed only using power when supporting the wearer, it is possible to increase the battery lifetime by only acting on those actions for which the wearer needs support. Dealing with controls for soft-robotic exoskeleton one major difficulty is to find a compromise between saving energy and supporting the wearer. Having an action-depending control can reduce the supported actions to cover only relevant ones and increase the lifetime of the battery. The system conditions are to detect the user actions in real-time and distinguish between actions which require support and those which do not. We contribute an analysis and modification of human action recognition(HAR) benchmark algorithms from activities of the daily living, transferred them onto industrial use cases containing short and mid-term action and reduce the models to be compatible using embedded computers for real-time recognition on soft exoskeletons. We identified the most common challenges for inertial measurement units based HAR and compare the best-performing algorithms using a newly recorded data set overhead car assembly for industrial relevance. As a benchmark data set we focused on the "Opportunity" data set. By introducing orientation estimation, we were able to increase the F1 scores by up to 0.04. With an overall F1 score without a Null-class of up to 0.883, we were able to lay the foundation to use HAR for action dependent force support.
  • Publication
    Effects on part density for a highly productive manufacturing of WC-Co via laser powder bed fusion
    ( 2021) ; ;
    Gordei, Anzhelika
    ;
    Kersting, Robert
    ;
    The additive manufacturing of parts made from difficult-to-weld materials through the usage of preheating temperatures of up to Î0 ⤠500 °C is enabled by newest L-PBF machine tools, such as the RenAM 500Q HT from the company RENISHAW PLC, Wottun-under-Edge, UK. This work aims to delevop processing parameters for the dense and crack-free manufacturing of tungsten-carbide cobalt (WC-Co) via this off-the-shelf machine tool. Therefore the laserpower and scanning speed were varied between 80 W ⤠PL ⤠350 W and 140 mm/s ⤠vS ⤠650 mm/s respectively. Furthermore the influence of a continuous and pulsed laser mode was analysed. A focus was set on the identification of parameters that enable a highly productive manufacturing while maintaining a high part density. A parameter set for relative density rel. > 94 % and a buildup rate v = 0.59 mm3/s was developed.