Now showing 1 - 10 of 560
No Thumbnail Available
Publication

Effects on the distortion of Inconel 718 components along a hybrid laser-based additive manufacturing process chain using laser powder bed fusion and laser metal deposition

2021 , Uhlmann, E. , Düchting, J. , Petrat, T. , Krohmer, E. , Graf, B. , Rethmeier, M.

The combination of laser powder bed fusion (LPBF), known for its geometrical freedom and accuracy, and the nozzle-based laser metal deposition process (LMD), known for its high build-up rates, has great potential to reduce the additive manufacturing times for large metallic parts. For the industrial application of the LPBF-LMD hybrid process chain, it is necessary to investigate the influence of the LMD process on the LPBF substrate. In addition, the build plate material also has a significant impact on the occurrence of distortion along the additive manufacturing process chain. In the literature, steel build plates are often used in laser-based additive manufacturing processes of Inconel 718, since a good metallurgical bonding can be assured whilst reducing costs in the production and restoration of the build plates. This paper examines the distortion caused by LMD material deposition and the influence of the build plate material along the hybrid additive manufacturing process chain. Twin cantilevers are manufactured by LPBF and an additional layer is subsequently deposited with LMD. The distortion is measured in the as-built condition as well as after heat treatment. The effect of different LMD hatch strategies on the distortion is determined. The experiments are conducted using the nickel-base alloy Inconel 718. The results show a significant influence of LMD path strategies on distortion, with shorter tool paths leading to less distortion. The remaining distortion after heat treatment is considerably dependent on the material of the build plate.

No Thumbnail Available
Publication

Cutting force prediction in micro-milling considering the cutting edge micro-geometry

2019 , Uhlmann, E. , Polte, J. , Wiesner, H.M. , Kuche, Y. , Polte, M.

The micro-milling process is used for a wide range of materials and enables the manufacturing of complex geometries with micro-features. One important factor for the tool life is the cutting force Fc, which depends on the applied technology, process parameters and cutting edge micro-geometry. High cutting forces Fc can lead to tool breakage in the transition between the shank and the cutting part of cemented carbide end mills. The prediction of cutting forces Fc in micro-milling processes through cutting force models could potentially decrease the hazard of tool breakage. By including the cutting edge radius rv into the prediction model, additional correction factors can be avoided. Therefore, further knowledge about the applicability of those models for the micro-milling process with chip thickness h < 0.01 mm is needed. In this investigation, the cutting force model of KOTSCHENREUTHER [1], which takes the cutting edge radius rv into account is used for the cutting force prediction in micro-milling. In order to validate this model, an innovative lead free copper alloy CuZn21Si3P is machined. Cemented carbide micro-milling tools with tool diameter D = 1 mm were used. The manufacturing of different cutting edge radii rv was realised with the immersed tumbling process. During milling experiments with a five-axis high precision machine tool the cutting forces Fc were measured. Cutting forces in a range of 6 N < Fc < 26 N were detected. The results show good correlations between the predicted and experimental determined cutting forces Fc. Furthermore, the measured cutting edge radii rv show a high influence on the deviation of the measured and predicted cutting forces Fc.

No Thumbnail Available
Publication

Increasing the productivity and quality of flute grinding processes through the use of layered grinding wheels

2019 , Uhlmann, E. , Schroer, N. , Muthulingam, A. , Gulzow, B.

Due to the increasing relevance of resource efficiency, the production of cutting tools is exposed to increasing demands in regard to productivity and quality. Flute grinding is of particular significance within the various grinding operations used in tool manufacturing. Apart from the rake face, the flute grinding process determines the quality of the cutting edges. However, the grinding wheels typically used for flute grinding are not designed to take the complex contact conditions of this process into account. This paper presents a method for designing application-oriented grinding wheels to improve the productivity and the quality of grinding processes. Firstly, a model is presented which is used to simulate the contact conditions. The results show the significance of the grinding wheel edge in flute grinding. Based on that, grinding wheels with different layers over its width were developed to compensate the varying and complex contact conditions. To verify this approach technological experiments were carried out.

No Thumbnail Available
Publication

Application of niobium carbide based cutting materials for peripheral milling of CFRP

2019 , Uhlmann, E. , Meier, P. , Hinzmann, D.

Due to its inherent material properties, the implementation of niobium carbide (NbC) as hard phase in cutting materials represents a promising alternative to machining. Recent investigations show equivalent tool life in metal cutting compared with cemented carbides based on tungsten carbide (WC). Besides metal cutting, the machining of high-performance composite materials poses an increasing importance due to its growing demand in the automotive and aeronautical sector. NbC and its wear resistance against abrasion can be suitable for this specific application. Additionally, the low density of NbC indicates an advantageous dynamic behaviour. Thus, this study focuses on the milling of carbon fiber reinforced plastics (CFRP). Complex tool geometries are implemented in a peripheral milling strategy. The machining trials are conducted with uncoated NbC-based cutting materials in CFRP with varying cutting speeds vc. The utilized NbC compositions (NbC-10TiC)-6Ni7.5VC and (NbC-15TiC7N3)-5Ni7.5WC2.5Mo2C embedded in a Nickel (Ni) matrix were applied and compared towards their performance with an industrial available cemented carbide (WC-Co). As tool life criteria, a tool diameter reduction of Dd = 0.1 mm and a cutting path of lc = 10.000 mm were defined. Apart from tool life performance, the workpiece quality was assessed. An inferior performance was identified with (NbC-10TiC)-6Ni7.5VC in terms of tool life compared to WC-Co, which can be attributed to microstructure issues. Yet, (NbC-15TiC7N3)-5Ni7.5WC2.5Mo2C shows a competitive performance in machining with an achieved cutting path lc identical to WC-Co. It can be stated, that NbC-Ni systems can accomplish an equivalent performance in comparison to WC-Co when machining CFRP.

No Thumbnail Available
Publication

Verfügbarkeitssteigerung durch gezielte Datenanalyse

2020 , Uhlmann, E.

No Thumbnail Available
Publication

Niobcarbid statt Wolframcarbid Alternativer Schneidstoff in der Drehbearbeitung

2019 , Kropidlowski, K. , Uhlmann, E. , Woydt, M. , Theiler, G. , Gradt, T.

No Thumbnail Available
Publication

Tool wear modelling using micro tool diameter reduction for micro-end-milling of tool steel H13

2019 , Manso, C.S. , Thom, S. , Uhlmann, E. , Assis, C.L.F de , Conte, E.G del

Micro components have been demanded increasingly due to the global trend of miniaturization of products and devices. Micro milling is one of the most promising processes for micro-scale production and differs from conventional milling due to the size effect introducing phenomena like the minimum chip thickness, making the prediction of micro milling process hard. Among challenges in micro milling, tool life and tool wear can be highlighted. Understanding tool wear and modelling in micro milling is challenging and essential to maintaining the quality and geometric tolerances of workpieces. This work investigates how to model the diameter reduction of a tool caused by tool wear for micro milling of H13 tool steel. Machining experiments were carried out in order to obtain cutting parameters affecting tool wear by considering the diameter reduction. Dry full slot milling with TiAlN (titanium aluminium nitride)-coated micro tools of diameter d = 400 mm was performed. Three levels of feed per tooth (fz = 2 mm, 4 mm and 5 mm) and two spindle speed levels (n = 30,000 rpm and 46,000 rpm) were used and evaluated over a cutting length of lc = 1182 mm. The results show that lower levels of feed per tooth and spindle speed lead to higher tool wear with a total diameter reduction over 22%. The magnitude of the cutting parameters affecting tool wear was determined by ANOVA (analysis of variance), and the model validation meets the statistical requirements with a coefficient of determination R2 = 83.5% showing the feasibility of the approach to predict tool wear using diameter reduction modelling in micro milling.

No Thumbnail Available
Publication

3-Achs-Portalfräsmaschine als Demonstrator für ein modulares Werkzeugmaschinengestell

2019 , Uhlmann, E. , Polte, M. , Blumberg, J. , Peukert, B.

No Thumbnail Available
Publication

Application of laser surface nanotexturing for the reduction of peri-implantitis on biomedical grade 5 Ti-6Al-4V dental abutments

2019 , Uhlmann, E. , Schweitzer, L. , Cunha, A. , Polte, J. , Huth-Herms, K. , Kieburg, H. , Hesse, B.

The annual revenue of dental implants is estimated on 33 billion USD in 2019 and the efforts to keep the teeth functionality and aesthetics is continuously growing over the years. However, loosening of dental implants induced by infection is still a critical and common problem worldwide. In this scenario, the development of new implant manufacturing strategies is of utmost importance. Every surface exposed in the oral cavity, both the tooth and the implant surface, are covered by a layer of salivary proteins, the so-called pellicle. The initial formation of a pellicle is followed by the attachment of bacterial cells onto it. Well-developed biofilms on dental implant surfaces become the main source of pathogenic microbes causing Peri-Implantitis, which is one of the main causes of dental implant failure. The surface topography and chemical composition of an implant are key factors in controlling surface wettability, which directly affects the formation of the biological films. In this sense, ultrafast laser surface nanotexturing rises as a promising advanced technology for controlling implant surface biological properties. Laser-processing parameters such as laser wavelength l, fluence F and number of pulses N are essential for surface texturing. Thus, this paper presents promising results on the influence of different laser induced periodic surface structures (LIPSS) on the composition of the pellicle and the biofilm formation on biomedical grade 5 Ti-6Al-4V dental abutments. Moreover, a biofilm reactor was built and adapted to assess the effect of the LIPSS on the biofilm formation.

No Thumbnail Available
Publication

Micro-cutting of a MMC-composite for enhanced injection moulds

2019 , Uhlmann, E. , Polte, M. , Hein, C. , Polte, J. , Jahnke, C.

Tools for micro-injection moulding are currently made of hardened steel. These tools are exposed to high local loads, which significantly reduce the injection moulding tool life time tT. Furthermore, the occurring wear of the milling tool during machining of hardened steel leads to reduced surface roughness Ra and geometrical accuracy GF. Copper and aluminium alloys as mould materials provide an alternative to hardened steel with advantages regarding material removal rate QW and wear of the milling tool, but with a significantly reduced life time of the injection moulding tool tT. Until now, the combination of a good machinability and high wear resistance cannot be achieved. The approach, presented in this paper consists of an easy to machine material and the development of a wear resistant metal-matrix-composite (MMC) material layer with a hardness of up to 3,000 HV. Therefore, the pre-machined test specimens made of aluminium-bronze are coated by laser dispersing with wolfram-carbide-particles W2C-WC. Furthermore, for the finishing machining of the coated moulds, a cutting technology for the machining of W2C-WC-particles was developed. The verification of the developed technology was performed with an injection moulding process based on carbon-fibre reinforced thermoplastic material. By means of documented machining efforts, the quality indicators geometrical accuracy GF and surface roughness Ra as well as occurring tool wear, the feasibility of the developed technology was demonstrated.