• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Multi-stage representation learning for blind Room-Acoustic parameter estimation with uncertainty quantification
 
  • Details
  • Full
Options
2026
Journal Article
Title

Multi-stage representation learning for blind Room-Acoustic parameter estimation with uncertainty quantification

Abstract
The ability to infer a general representation of the acoustic environment from a reverberant recording is a key objective in numerous applications. We propose a multi-stage approach that integrates task-agnostic representation learning with uncertainty quantification. Leveraging the conformal prediction framework, our method models the error incurred in the estimation of the acoustic environment embedded in a reverberant recording, which reflects the ambiguity inherent in distinguishing between an unknown source signal and the induced reverberation. Although our approach is flexible and agnostic to specific downstream objectives, experiments on real-world data demonstrate competitive performance on established parameter estimation tasks when compared to baselines trained end-to-end or with contrastive losses. Furthermore, a latent disentanglement analysis reveals the interpretability of the learned representations, which effectively capture distinct factors of variation within the acoustic environment.
Author(s)
Gotz, Philipp
International Audio Laboratories Erlangen
Tuna, Cagdas
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Brendel, Andreas
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Walther, Andreas  
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Habets, Emanuël Anco Peter
International Audio Laboratories Erlangen
Journal
Journal of the Acoustical Society of America : JASA  
DOI
10.1121/10.0042193
Language
English
Fraunhofer-Institut für Integrierte Schaltungen IIS  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024