• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Anderes
  4. Neural Network-Powered Finger-Drawn Biometric Authentication
 
  • Details
  • Full
Options
November 14, 2025
Paper (Preprint, Research Paper, Review Paper, White Paper, etc.)
Title

Neural Network-Powered Finger-Drawn Biometric Authentication

Title Supplement
Published on arXiv
Abstract
This paper investigates neural network-based biometric authentication using finger-drawn digits on touchscreen devices. We evaluated CNN and autoencoder architectures for user authentication through simple digit patterns (0-9) traced with finger input. Twenty participants contributed 2,000 fingerdrawn digits each on personal touchscreen devices. We compared two CNN architectures: a modified Inception-V1 network and a lightweight shallow CNN for mobile environments. Additionally, we examined Convolutional and Fully Connected autoencoders for anomaly detection. Both CNN architectures achieved ∼89% authentication accuracy, with the shallow CNN requiring fewer parameters. Autoencoder approaches achieved ∼75% accuracy. The results demonstrate that finger-drawn symbol authentication provides a viable, secure, and user-friendly biometric solution for touchscreen devices. This approach can be integrated with existing pattern-based authentication methods to create multilayered security systems for mobile applications.
Author(s)
Al Balkhi, Maan
Gontarska, Kordian
Harasic, Marko
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Paschke, Adrian  
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Open Access
File(s)
Download (399.65 KB)
Rights
CC BY-SA 4.0: Creative Commons Attribution-ShareAlike
DOI
10.48550/arXiv.2511.11235
10.24406/publica-7192
Language
English
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Keyword(s)
  • biometric authentication

  • neural networks

  • convolutional neural networks

  • autoencoders

  • touchscreen security

  • anomaly detection

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024