• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Poster: Road to Tiny Reality: Digital Twins for Decentralized AI on Microcontrollers
 
  • Details
  • Full
Options
2025
Conference Paper
Title

Poster: Road to Tiny Reality: Digital Twins for Decentralized AI on Microcontrollers

Abstract
This work presents a two-stage digital twin methodology for developing and validating DFL algorithms on resource-constrained microcontrollers. The first stage, our simulation-based twin, enables rapid prototyping and algorithm exploration without hardware constraints, while the second stage, based on leveraging several hardware emulation instances in a containerized environment, provides hardware-aware validation under realistic conditions including network delays, resource limitations, and communication protocols. This approach bridges the critical gap between research and deployment, enabling performance analysis at a pace impractical with physical hardware alone. We demonstrate how this digital twin pipeline is essential for robust Machine Learning Operations (MLOps) in IoT environments, allowing for scalable, cost-effective testing of decentralized tiny ML. Our results across simulation, emulation, and a cluster of real ESP32-S3 microcontrollers show that our twins faithfully reproduce physical device behavior, making it a valuable framework for advancing tiny, decentralized AI.
Author(s)
Asadi, Navidreza
Technische Universität München
Bengü, Halil Ibrahim
Technische Universität München
Wulfert, Lars  
Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS  
Woehrle, Hendrik
Universität Duisburg-Essen
Kellerer, Wolfgang
Technische Universität München
Mainwork
ACM MOBICOM '25: Proceedings of the 31st Annual International Conference on Mobile Computing and Networking  
Conference
International Conference on Mobile Computing and Networking 2025  
Open Access
DOI
10.1145/3680207.3765668
Additional link
Full text
Language
English
Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS  
Keyword(s)
  • Decentralized Federated Learning

  • Digital Twin

  • TinyML

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024