• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Benchmarking Quantum Reinforcement Learning
 
  • Details
  • Full
Options
2025
Conference Paper
Title

Benchmarking Quantum Reinforcement Learning

Abstract
Benchmarking and establishing proper statistical validation metrics for reinforcement learning (RL) remain ongoing challenges, where no consensus has been established yet. The emergence of quantum computing and its potential applications in quantum reinforcement learning (QRL) further complicate benchmarking efforts. To enable valid performance comparisons and to streamline current research in this area, we propose a novel benchmarking methodology, which is based on a statistical estimator for sample complexity and a definition of statistical outperformance. Furthermore, considering QRL, our methodology casts doubt on some previous claims regarding its superiority. We conducted experiments on a novel benchmarking environment with flexible levels of complexity. While we still identify possible advantages, our findings are more nuanced overall. We discuss the potential limitations of these results and explore their implications for empirical research on quantum advantage in QRL.
Author(s)
Meyer, Nico
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Ufrecht, Christian
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Yammine, George
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Kontes, Georgios
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Mutschler, Christopher  
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Scherer, Daniel David
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Mainwork
42nd International Conference on Machine Learning, ICML 2025. Proceedings  
Conference
International Conference on Machine Learning 2025  
Link
Link
Language
English
Fraunhofer-Institut für Integrierte Schaltungen IIS  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024