• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Reinforcement Learning Strategies for Parameter Design of Bidirectional Cllc Resonant Converters With Ultrawide Voltage Range
 
  • Details
  • Full
Options
November 18, 2024
Conference Paper
Title

Reinforcement Learning Strategies for Parameter Design of Bidirectional Cllc Resonant Converters With Ultrawide Voltage Range

Abstract
In this paper, a design methodology of the resonant tank for a bidirectional CLLC resonant converter based on massively parallelized circuit simulations is proposed to achieve ultrawide input/output voltage range. A simplified closed-loop model of the CLLC converter with variable circuit parameters is built. To investigate potential configurations of the circuit parameters, various sampling methods and optimization techniques are used to generate diverse sets of parameters: Grid Search (GS), Tree-structured Parzen Estimator (TPE), Covariance-Matrix Adaptation Evolution Strategy (CMA-ES), standard Reinforcement Learning (RL), Diversity-driven Reinforcement Learning (DdRL). Appropriate criteria have been added to greatly narrow down the plausible sampled design configurations which can be used for further detailed analysis. Together with the conventional design method following the design guideline, the design performances are analyzed and compared. The sampling results indicate the RL-based algorithms can obtain the comparable number of effective designs as GS and have much better diversity at the same time, which demonstrates the RL-based design methods can effectively help power electronic engineers design the resonant tank parameters of the CLLC converter.
Author(s)
Yang, Xiaotian
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB  
Kruse, Georg  
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB  
Schwanninger, Raffael  
Friedrich-Alexander-University
Coelho, Rodrigo
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB  
Wunder, Bernd  
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB  
Roßkopf, Andreas  
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB  
Lorentz, Vincent  orcid-logo
University of Bayreuth
März, Martin  
Friedrich-Alexander-University
Mainwork
IEEE Design Methodologies Conference, DMC 2024  
Conference
Design Methodologies Conference 2024  
DOI
10.1109/DMC62632.2024.10812123
Language
English
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024