• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Semantic Intelligence: Graph RAG-Driven Agents for Time Series Analytics
 
  • Details
  • Full
Options
2026
Conference Paper
Title

Semantic Intelligence: Graph RAG-Driven Agents for Time Series Analytics

Abstract
This work introduces a novel framework that combines LLMs with knowledge graphs to enhance the automation, interpretability, and contextual reasoning in time series analytics. It allows users to interact with time series datasets through intuitive, natural language queries, enabling the extraction of actionable insights from both raw data and semantic context. By leveraging Graph RAG, the framework integrates structured domain knowledge, improves reasoning accuracy, and facilitates context-aware responses. Furthermore, leveraging a knowledge graph built upon a dedicated ontology serving as a memory mechanism enables the incremental accumulation of insights and supports iterative, dynamic exploration of temporal characteristics. This approach simplifies access to advanced analytics for users with diverse expertise levels, allowing for a more comprehensive understanding of time series data. This paper outlines the framework’s architecture, assesses its performance through an evaluation using multiple LLMs, and discusses potential future improvements.
Author(s)
Graß, Alexander  
Fraunhofer-Institut für Angewandte Informationstechnik FIT  
Pack, Christopher Ingo  orcid-logo
Fraunhofer-Institut für Angewandte Informationstechnik FIT  
Collarana Vargas, Diego
Fraunhofer-Institut für Angewandte Informationstechnik FIT  
Decker, Stefan  
Fraunhofer-Institut für Angewandte Informationstechnik FIT  
Beecks, Christian  
Fraunhofer-Institut für Angewandte Informationstechnik FIT  
Mainwork
Intelligent Data Engineering and Automated Learning – IDEAL 2025  
Conference
International Conference on Intelligent Data Engineering and Automated Learning 2025  
DOI
10.1007/978-3-032-10486-1_21
Language
English
Fraunhofer-Institut für Angewandte Informationstechnik FIT  
Keyword(s)
  • Data Analysis Agents

  • Data Science

  • Knowledge Graphs

  • Large Language Models

  • Retrieval Augmented Generation

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024