• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. A deep learning framework for predicting and optimizing flow fields in reactive flows
 
  • Details
  • Full
Options
2026
Journal Article
Title

A deep learning framework for predicting and optimizing flow fields in reactive flows

Abstract
Computational Fluid Dynamics (CFD) is widely used for solving and optimizing the flow fields of different systems and applications. However, running CFD simulations, especially for reactive flow systems, can be very time consuming and memory intensive, which limits e.g. design space exploration in the optimization tasks. In this work, a data-driven modeling methodology has been developed to predict 2D flow distributions in a chemical reactor. The primary objective was establishing correlations between global boundary conditions (including process and geometrical parameters), and the resulting CFD flow field distributions. A convolutional autoencoder was used to compress and reduce the data dimensions efficiently. Simultaneously, a multilayer perceptron served as the mapping mechanism that linked the global boundary conditions to the compressed data. The methodology developed in this work provides a very successful demonstration of its ability to map both geometric and process parameters to flow fields. The results showed a prediction accuracy of approximately 94%–97% for the CFD cases, indicating a very high prediction quality. Besides this, the prediction time was less than a second, which is significantly lower compared to the computational effort required for CFD simulations. To demonstrate the practical applicability of this approach, an interactive tool was developed to enable real-time visualization of predicted flow fields. This tool represents a foundational step towards applying digital twins and integrating such models into industrial practice.
Author(s)
Gharib, Mohsen
Fraunhofer-Institut für Keramische Technologien und Systeme IKTS  
Maleki, Farideh Hoseinian
Technische Universität Bergakademie Freiberg
Rössger, Philip
Technische Universität Bergakademie Freiberg
Gräbner, Martin
Fraunhofer-Institut für Keramische Technologien und Systeme IKTS  
Richter, Andreas
Fraunhofer-Institut für Keramische Technologien und Systeme IKTS  
Journal
Chemical engineering journal advances  
Project(s)
Design, Aufbau und Inbetriebnahme eines innovativen Laborschmelzofens für Glas
Vergasungsprozesse mit integrierter Überschussstromeinbindung zur flexiblen Stromerzeugung und Herstellung synthetischer Energieträger aus Reststoffen; Teilvorhaben: Untersuchungen der Wirbelschicht- und Flugstromvergasung mit analytischen, experimentellen und CFD-basisierten Methoden  
Funder
Europäische Union  
Bundesministerium für Wirtschaft und Energie  
Open Access
File(s)
Download (5.36 MB)
Rights
CC BY 4.0: Creative Commons Attribution
DOI
10.1016/j.ceja.2025.100966
10.24406/publica-7004
Additional link
Full text
Language
English
Fraunhofer-Institut für Keramische Technologien und Systeme IKTS  
Keyword(s)
  • CFD

  • Chemical reactors

  • Convolutional autoencoders

  • Multilayer perceptron

  • Neural networks

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024