Options
2026
Journal Article
Title
Predictive modeling of tolerance-dependent failure behavior of self-pierce riveted joints: From coupon-level tests to sub-component validation
Abstract
Manufacturing tolerances have a measurable influence on the structural integrity of self-piercing riveted (SPR) joints in automotive applications, yet their quantitative impact on load-bearing behavior remains insufficiently resolved. This study establishes a validated hierarchical methodology to predict tolerance-dependent failure behavior of SPR joints, progressing from coupon to sub-component scale through an integrated experimental–numerical approach. Five critical manufacturing tolerances, including rivet length (±0.5 mm), rivet head position (±0.3 mm), orthogonality deviation (2.8° and 5°), lateral offset (up to 1.2 mm), and flange overlap reduction (up to 7.5 mm), were investigated. Steel-steel joints exhibited a higher sensitivity to tolerances by a factor of 2-3 compared to steel-aluminum joints. A unified effective rivet length concept was developed to consolidate the geometric effects of all tolerances into a single physically meaningful parameter, enabling load-bearing capacity prediction with R2 > 0.95 across all evaluated loading directions. The sub-component validation employing T-joint specimens indicates a 2-3 fold amplification of tolerance effects at critical structural regions, providing experimental evidence for the hierarchical scaling principle. The methodology was implemented in a tolerance-dependent CONSTRAINED_SPR3 formulation, providing >99 % computational efficiency improvement while maintaining a deviation in maximum force prediction within ±7 %. This framework enables the physically consistent representation of manufacturing variation within large-scale simulations and establishes a transferable basis for tolerance-resilient virtual vehicle development.
Author(s)
Open Access
File(s)
Rights
CC BY 4.0: Creative Commons Attribution
Additional link
Language
English