• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Gist - Optimizing Segmentation for Decentralized Federated Learning on Tiny Devices
 
  • Details
  • Full
Options
2025
Conference Paper
Title

Gist - Optimizing Segmentation for Decentralized Federated Learning on Tiny Devices

Abstract
We introduce Gist, a decentralized federated learning framework for tiny microcontrollers. Rather than considering all model parameters as equally important, we let devices get the "gist"of the updates. Our contribution has three pillars: (1) it segments model parameters by their importance, identifying the most impactful updates; (2) it shares the segments probabilistically, ensuring rapid propagation of important knowledge while maintaining model diversity; and (3) it aggregates updates using a success-based scheme, giving more weight to information from better-performing peers. We implement and validate Gist through various simulation experiments, realistic large-scale emulation, and deployment on a physical cluster of ESP32-S3 microcontrollers. Across three models and two tasks, Gist outperforms existing baselines, achieving higher accuracy and faster convergence, especially in larger networks consisting of hundreds of devices.
Author(s)
Asadi, Navidreza
Technische Universität München
Bengü, Halil Ibrahim
Technische Universität München
Wulfert, Lars  
Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS  
Wöhrle, Hendrik
Universität Duisburg-Essen
Kellerer, Wolfgang
Technische Universität München
Mainwork
FLEdge-AI 2025, Federated Learning and Edge AI for Privacy and Mobility. Proceedings  
Conference
International Conference on Mobile Computing and Networking 2025  
Workshop on Federated Learning and Edge AI for Privacy and Mobility 2025  
Open Access
File(s)
Download (916.88 KB)
Rights
CC BY-NC-SA 4.0: Creative Commons Attribution-NonCommercial-ShareAlike
DOI
10.1145/3737899.3768527
10.24406/publica-6984
Additional link
Full text
Language
English
Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024