• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Predicting Energy Consumption of TVsinVideo Streaming Using Machine Learning Techniques
 
  • Details
  • Full
Options
December 15, 2025
Conference Paper
Title

Predicting Energy Consumption of TVsinVideo Streaming Using Machine Learning Techniques

Abstract
The climate crisis highlights the environmental impact of information and communication technologies (ICT), necessitating sustainable practices to reduce carbon emissions. In compliance with the Corporate Sustainability Reporting Directive (CSRD), large European companies are required to disclose their social and environmental risks, enhancing transparency regarding corporate sustainability performance. With video streaming increasingly leading Internet traffic, research about CO2 emission in video streaming has become critical, especially for the content providers and end-users. In this study, we provide a machine learning-based model to predict the energy consumption of TVs while playing videos. The energy consumption predicted by our model is a means to estimate the CO2 emission of the client side in the streaming chain. To acquire energy data of TVs, we deploy a framework to automatically monitor the energy consumption of TVs. The experimental results show that our model can accurately predict energy consumption with a high correlation to actual measurements, achieving R2 values of up to 0.988 in scenarios with known TV models.
Author(s)
Nguyen, Minh  orcid-logo
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Do, Bach
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Ghaddar, Moustafa
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Ansari, Abdul Ghaffar
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Lasak, Martin
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Seeliger, Robert  orcid-logo
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Arbanowski, Stefan  
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Steglich, Stephan  
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Mainwork
International Conference on Electrical, Computer, Communications and Mechatronics Engineering, ICECCME 2025  
Conference
International Conference on Electrical, Computer, Communications and Mechatronics Engineering 2025  
DOI
10.1109/ICECCME64568.2025.11277973
Language
English
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Keyword(s)
  • green streaming

  • video streaming

  • energy consumption

  • machine learning models

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024