• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. MADPromptS: Unlocking Zero-Shot Morphing Attack Detection with Multiple Prompt Aggregation
 
  • Details
  • Full
Options
2025
Conference Paper
Title

MADPromptS: Unlocking Zero-Shot Morphing Attack Detection with Multiple Prompt Aggregation

Abstract
Face Morphing Attack Detection (MAD) is a critical challenge in face recognition security, where attackers can fool systems by interpolating the identity information of two or more individuals into a single face image, resulting in samples that can be verified as belonging to multiple identities by face recognition systems. While multimodal foundation models (FMs) like CLIP offer strong zero-shot capabilities by jointly modeling images and text, most prior works on FMs for biometric recognition have relied on fine-tuning for specific downstream tasks, neglecting their potential for direct, generalizable deployment. This work explores a pure zero-shot approach to MAD by leveraging CLIP without any additional training or fine-tuning, focusing instead on the design and aggregation of multiple textual prompts per class. By aggregating the embeddings of diverse prompts, we better align the model's internal representations with the MAD task, capturing richer and more varied cues indicative of bona-fide or attack samples. Our results show that prompt aggregation substantially improves zero-shot detection performance, demonstrating the effectiveness of exploiting foundation models' built-in multimodal knowledge through efficient prompt engineering.
Author(s)
Loureiro Caldeira, Maria Eduarda
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Boutros, Fadi  orcid-logo
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Damer, Naser  
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Mainwork
SVC '25: Proceedings of the 1st International Workshop & Challenge on Subtle Visual Computing  
Project(s)
Next Generation Biometric Systems  
Next Generation Biometric Systems  
Funder
Bundesministerium für Forschung, Technologie und Raumfahrt  
Hessisches Ministerium für Wissenschaft und Kunst -HMWK-  
Conference
International Conference on Multimedia 2025  
International Workshop & Challenge on Subtle Visual Computing 2025  
Open Access
File(s)
Download (34.27 MB)
Rights
CC BY 4.0: Creative Commons Attribution
DOI
10.1145/3728425.3759909
10.24406/publica-6852
Additional link
Full text
Language
English
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Keyword(s)
  • Branche: Infrastructure and Public Services

  • Research Line: Computer vision (CV)

  • Research Line: Human computer interaction (HCI)

  • Research Line: Machine learning (ML)

  • LTA: Machine intelligence, algorithms, and data structures (incl. semantics)

  • Biometrics

  • Face Recognition

  • Machine learning

  • Artificial intelligence (AI)

  • Morphing attack

  • ATHENE

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024