• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Leveraging Influence Functions for Resampling Data in Physics-Informed Neural Networks
 
  • Details
  • Full
Options
2026
Conference Paper
Title

Leveraging Influence Functions for Resampling Data in Physics-Informed Neural Networks

Abstract
Physics-informed neural networks (PINNs) offer a powerful approach to solving partial differential equations (PDEs), which are ubiquitous in the quantitative sciences. Applied to both forward and inverse problems across various scientific domains, PINNs have recently emerged as a valuable tool in the field of scientific machine learning. A key aspect of their training is that the data - spatio-temporal points sampled from the PDE’s input domain - are readily available. Influence functions, a tool from the field of explainable AI (XAI), approximate the effect of individual training points on the model, enhancing interpretability. In the present work, we explore the application of influence function-based sampling approaches for the training data. Our results indicate that such targeted resampling based on data attribution methods has the potential to enhance prediction accuracy in physics-informed neural networks, demonstrating a practical application of an XAI method in PINN training.
Author(s)
Naujoks, Jonas R.
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Krasowski, Aleksander
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Weckbecker, Moritz
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Yolcu, Galip Ümit
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Wiegand, Thomas  
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Lapuschkin, Sebastian Roland
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Samek, Wojciech  
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Klausen, René Pascal
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Mainwork
Explainable Artificial Intelligence. Third World Conference, xAI 2025. Proceedings. Part II  
Conference
World Conference on eXplainable Artificial Intelligence 2025  
Open Access
DOI
10.1007/978-3-032-08324-1_17
Additional link
Full text
Language
English
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Keyword(s)
  • Data Attribution

  • Explainable Artificial Intelligence

  • Physics-Informed Neural Networks

  • Resampling

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024