• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Scientific Machine Learning (SciML) - How the Fusion of AI and Physics is Giving Rise to Promising Simulation Methodologies
 
  • Details
  • Full
Options
September 24, 2025
Conference Paper
Title

Scientific Machine Learning (SciML) - How the Fusion of AI and Physics is Giving Rise to Promising Simulation Methodologies

Abstract
The combination of physical modeling and machine learning, known as Scientific Machine Learning (SciML), is enabling a new generation of simulation methodologies. In this work, we demonstrate the potential of SciML for simulating silicide formation in Ni-SiC systems, a process highly relevant to TCAD and device engineering. Four neural network architectures - standard MLPs, enhanced mMLPs with residual connections, interpretable Kolmogorov-Arnold Networks (KANs), and Chebyshev KANs (cKANs) - are benchmarked, each trained solely on the governing physical laws. All models tested achieve accurate results and enable rapid evaluation, providing large speedups over traditional solvers. Among these, the mMLP yields the best accuracy. These findings underscore the strong potential of SciML for efficient and accurate TCAD simulations, paving the way for scalable, data-integrated modeling of complex material interactions in semiconductor technology.
Author(s)
Roßkopf, Andreas  
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB  
Cheng, Xuepeng
Friedrich-Alexander-Universität Erlangen-Nürnberg
Straub, Christopher  orcid-logo
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB  
Tenbrinck, Daniel
Friedrich-Alexander-Universität Erlangen-Nürnberg  
Mainwork
International Conference on Simulation of Semiconductor Processes and Devices, SISPAD 2025  
Project(s)
Explainable, AI-based simulation using Physics-Informed Neural Networks (PINNs)
Funder
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.  
Conference
International Conference on Simulation of Semiconductor Processes and Devices 2025  
DOI
10.1109/SISPAD66650.2025.11186115
Language
English
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024