• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Betriebsführung von Batteriesystemen in Industriebetrieben mit Reinforcement Learning
 
  • Details
  • Full
Options
2024
Journal Article
Title

Betriebsführung von Batteriesystemen in Industriebetrieben mit Reinforcement Learning

Other Title
Control of battery systems in industrial companies with Reinforcement Learning
Abstract
Battery storage systems play a crucial role in the system integration of renewable energy. Applying various use cases can increase the profitability of a battery, but requires an intelligent energy management. Reinforcement Learning (RL) proves effective in solving complex problems without the necessity of manual modification of input parameters as the system changes. This paper investigates the economic potential of an RL algorithm as a battery control strategy for an industrial company for the multi-use case energy arbitrage and atypical grid usage. Applying it on the investigated data set, the RL controller manages to save between € 85,000 and € 98,000 per year, with capacity costs reduced by 40 to 46% compared to the reference case.
Author(s)
Rothenhäusler, Anna Christin
Fraunhofer-Institut für Solare Energiesysteme ISE  
Groß, Arne
Universität Freiburg
Kühnbach, Matthias  orcid-logo
Fraunhofer-Institut für Solare Energiesysteme ISE  
Journal
Elektrotechnik und Informationstechnik : E & I  
DOI
10.1007/s00502-024-01234-9
Language
German
Fraunhofer-Institut für Solare Energiesysteme ISE  
Keyword(s)
  • Battery storage

  • Energy management system

  • Reinforcement Learning

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024