• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Convolutional Physics-Informed Neural Networks for Fast Prediction of Core Losses in Axisymmetric Transformers
 
  • Details
  • Full
Options
2024
Journal Article
Title

Convolutional Physics-Informed Neural Networks for Fast Prediction of Core Losses in Axisymmetric Transformers

Abstract
In this article, solutions of the magnetostatic Maxwell's equation on parametric axisymmetric transformer geometries are approximated by a convolutional approach on physics-informed neural networks (ConvPINNs). The trained ConvPINN is capable of predicting magnetic vector potentials (MVPs) and magnetic flux densities in a matter of milliseconds for a range of geometries described by a total of 18-20 degrees of freedom (DoFs). The combination of ConvPINN with an existing framework for core loss prediction yields a super fast workflow for the approximation of core losses on a wide range of geometric setups. The combination of inference speed and accuracy enables new orders of magnitude for the optimization of transformer designs going forward.
Author(s)
Brendel, Philipp  orcid-logo
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB  
Medvedev, Vlad
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB  
Roßkopf, Andreas  
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB  
Journal
IEEE transactions on magnetics  
Open Access
File(s)
Download (5.78 MB)
Rights
CC BY 4.0: Creative Commons Attribution
DOI
10.1109/TMAG.2024.3431703
10.24406/publica-6285
Additional link
Full text
Language
English
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB  
Keyword(s)
  • Convolutional neural networks

  • core losses

  • magnetostatics

  • physics-informed neural networks (PINNs)

  • transformers

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024