• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Expressive equivalence of classical and quantum restricted Boltzmann machines
 
  • Details
  • Full
Options
2025
Journal Article
Title

Expressive equivalence of classical and quantum restricted Boltzmann machines

Abstract
The development of generative models for quantum machine learning has faced challenges such as trainability and scalability. A notable example is the quantum restricted Boltzmann machine (QRBM), where non-commuting Hamiltonians make gradient evaluation computationally demanding, even on fault-tolerant devices. In this work, we propose a semi-quantum restricted Boltzmann machine (sqRBM), a model designed to overcome difficulties associated with QRBMs. The sqRBM Hamiltonian commutes in the visible subspace while remaining non-commuting in the hidden subspace, enabling us to derive closed-form expressions for output probabilities and gradients. Our analysis shows that, for learning a given distribution, a classical model requires three times more hidden units than an sqRBM. Numerical simulations with up to 100 units validate this prediction. With reduced resource demands, sqRBMs provide a feasible framework for early quantum generative models.
Author(s)
Demidik, Maria
Deutsches Elektronen-Synchrotron (DESY)
Tüysüz, Cenk
Deutsches Elektronen-Synchrotron (DESY)
Piatkowski, Nico  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Grossi, Michele
Organisation Européenne pour la Recherche Nucléaire
Jansen, Karl
Deutsches Elektronen-Synchrotron (DESY)
Journal
Communications Physics  
Open Access
File(s)
Download (750.53 KB)
Rights
CC BY 4.0: Creative Commons Attribution
DOI
10.1038/s42005-025-02353-1
10.24406/publica-6139
Additional link
Full text
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024