• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Synthetic data sets for person Re-Identification: A critical analysis
 
  • Details
  • Full
Options
2025
Journal Article
Title

Synthetic data sets for person Re-Identification: A critical analysis

Abstract
Supervised methods for person Re-Identification (Re-Id) need extensive manual annotation, limiting data set size and the resulting generalisation capability to unseen target data. Unsupervised methods avoid manual annotation but typically attain a lower performance. Synthetic training data can mitigate these issues, as they allow generating large data sets encompassing more representative variations in visual factors such as background scenes and pedestrian appearance without requiring manual annotation and without privacy issues arising from recent regulations. Existing synthetic data sets vary in size, diversity of human models, camera views, backgrounds, as well as photorealism. It is, however, not yet clear how all such factors affect Re-Id performance. We conduct a comprehensive and systematic analysis and experimental evaluation of existing synthetic data sets, to understand how the main factors characterising them affect the generalisation capability to real data. Our results provide useful guidelines towards developing effective synthetic data sets for Re-Id.
Author(s)
Delussu, Rita
Università degli Studi di Sassari
Putzu, Lorenzo
Università degli Studi di Cagliari
Boutros, Fadi  orcid-logo
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Bisogni, Carmen
Università degli Studi di Salerno
Damer, Naser  
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Fumera, Giorgio
Università degli Studi di Cagliari
Journal
Image and Vision Computing  
Open Access
File(s)
Download (3.52 MB)
Rights
CC BY 4.0: Creative Commons Attribution
DOI
10.1016/j.imavis.2025.105753
10.24406/publica-6132
Additional link
Full text
Language
English
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Keyword(s)
  • Generalisation capability

  • Person Re-Identification

  • Photorealism

  • Synthetic training data

  • Visual variations

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024