• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. A Design Tool for Battery/Supercapacitor Hybrid Energy Storage Systems Based on the Physical–Electrochemical Degradation Battery Model BaSiS
 
  • Details
  • Full
Options
2024
Journal Article
Title

A Design Tool for Battery/Supercapacitor Hybrid Energy Storage Systems Based on the Physical–Electrochemical Degradation Battery Model BaSiS

Abstract
A design toolbox has been developed for hybrid energy storage systems (HESSs) that employ both batteries and supercapacitors, primarily focusing on optimizing the system sizing/cost and mitigating battery aging. The toolbox incorporates the BaSiS model, a non-empirical physical–electrochemical degradation model for lithium-ion batteries that enables accurate simulations of battery performance and degradation under realistic operating conditions. The paper presents a detailed description of the parameterization, and validation process for the battery model, emphasizing the high accuracy and strong reliability of the battery aging prediction. The HESS design toolbox can be used to investigate the impact of various battery/supercapacitor configurations and energy management algorithms on the design, battery degradation, and system investment cost of the hybrid storage system. To illustrate the effectiveness of the design toolbox, a case study on Dynamic Moderation frequency support in the UK grid was conducted. For this use case, the application of hybrid storage energy systems is well suited due to the highly dynamic power regulation requirements in island grids with low inertia. By utilizing the fast response of supercapacitors, the stress on the battery caused by short-term high-power peaks can be significantly alleviated. In this way, the hybrid storage system effectively reduces either the battery size or the battery aging rate. In summary, this research highlights the crucial role of a comprehensive analysis in the design of hybrid energy storage systems, addressing both battery aging and overall system costs. The design toolbox can provide transparency regarding the design space and assist in determining the most suitable HESS configuration for a given application.
Author(s)
Shan, Wei Wei
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
Schwalm, Michael
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
Shan, Martin
Ostfalia Hochschule für Angewandte Wissenschaften- Hochschule Braunschweig/Wolfenbüttel
Journal
Energies  
Open Access
File(s)
Download (5.25 MB)
Rights
CC BY 4.0: Creative Commons Attribution
DOI
10.3390/en17143481
10.24406/publica-6090
Additional link
Full text
Language
English
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
Keyword(s)
  • BaSiS

  • design tool

  • dynamic moderation

  • hybrid energy storage

  • non-empirical physical–electrochemical degradation model

  • supercapacitor

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024