• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. LiDAR-based self-localization using an adaptive machine learning method
 
  • Details
  • Full
Options
2025
Conference Paper
Title

LiDAR-based self-localization using an adaptive machine learning method

Abstract
In this paper, we present our approach for a convolutional neural network (CNN)-driven feature extraction from 3D point cloud data that can be used for self-localization with respect to an existing feature map of the terrain. We use an image-based CNN method from the literature to extract local features from transformed point cloud data. We introduce a method for position estimation with the retrieval results of one 360° point cloud and compare the results of this LiDAR-based technique with those from the image-based model. Furthermore, we investigate how the use of occupancy grids generated from point clouds can be used to refine the feature map and thus achieve similar localization results with a lower reference data density for map generation.
Author(s)
Hammer, Marcus  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Arens, Michael  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Hebel, Marcus  orcid-logo
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Mainwork
Autonomous Systems for Security and Defence II  
Conference
Conference "Autonomous Systems for Security and Defence" 2025  
DOI
10.1117/12.3069809
Language
English
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024