• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Generative Inverse Design of Metamaterials Enhanced by Physics-Informed Neural Network
 
  • Details
  • Full
Options
2025
Conference Paper
Title

Generative Inverse Design of Metamaterials Enhanced by Physics-Informed Neural Network

Abstract
Metamaterial design traditionally depends on computationally expensive physics-based simulations, while deep learning approaches require extensive, high-quality training data. This work introduces a data-free deep learning framework that combines a Conditional Deep Convolutional Generative Adversarial Network (cDCGAN) with a Physics-Informed Neural Network (PINN) for inverse design of transmission-type metasurfaces. The cDCGAN generates flexible meta-atom shapes, while the PINN acts as a fast, physics-based simulator, enforcing Maxwell's equations and generating adaptive training data. Our approach enables diverse, pixel-level metasurface designs that align with target spectra, outperforming traditional methods in flexibility and data efficiency.
Author(s)
Medvedev, Vlad
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB  
Roßkopf, Andreas  
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB  
Erdmann, Andreas  
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB  
Mainwork
Nineteenth International Congress on Artificial Materials for Novel Wave Phenomena, Metamaterials 2025  
Conference
International Congress on Artificial Materials for Novel Wave Phenomena 2025  
DOI
10.1109/Metamaterials65622.2025.11174196
Language
English
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024