• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. SYNOSIS: Image Synthesis Pipeline for Machine Vision in Metal Surface Inspection
 
  • Details
  • Full
Options
2025
Journal Article
Title

SYNOSIS: Image Synthesis Pipeline for Machine Vision in Metal Surface Inspection

Abstract
The use of machine learning methods for the development of robust and flexible visual inspection systems has shown promising results. However, their performance is highly dependent on the large amount and diversity of training data, which is difficult to obtain in practice. Recent developments in synthetic dataset generation have seen increasing success in overcoming these problems. However, the prevailing work revolves around the usage of generative models, which suffer from data shortages, hallucinations, and provide limited support for unobserved edge-cases. In this work, we present the first synthetic data generation pipeline that is capable of generating large datasets of physically realistic textures exhibiting sophisticated structured patterns. Our framework is based on procedural texture modelling with interpretable parameters, uniquely allowing us to guarantee precise control over the texture parameters as we generate a high variety of observed and unobserved texture instances. We publish the dual dataset used in this paper, presenting models of sandblasting, parallel, and spiral milling textures, which are commonly present on manufactured metal products. To evaluate the dataset quality, we go beyond final model performance comparison by measuring different image similarities between the real and synthetic domains. This uncovered a trend, indicating these metrics could be used to predict downstream detection performance, which can strongly impact future developments of synthetic data.
Author(s)
Fulir, Juraj
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Jeziorski, Natascha
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Bosnar, Lovro  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Hagen, Hans
Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau
Redenbach, Claudia
Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau
Herrfurth, Tobias
Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF  
Trost, Marcus  
Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF  
Gischkat, Thomas
Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF  
Gospodnetic, Petra  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Journal
Sensors  
Open Access
File(s)
Download (85.42 MB)
Rights
CC BY 4.0: Creative Commons Attribution
DOI
10.3390/s25196016
10.24406/publica-5919
Additional link
Full text
Language
English
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF  
Keyword(s)
  • data similarity

  • defect recognition

  • domain generalization

  • machine vision

  • milling

  • surface inspection

  • surface texture

  • synthetic data

  • texture modeling

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024