• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Quantum annealing-based feature selection
 
  • Details
  • Full
Options
2026
Journal Article
Title

Quantum annealing-based feature selection

Abstract
Feature selection is crucial for enhancing the accuracy and efficiency of machine learning models. This work investigates the possibility of the usefulness of a quantum annealer to tackle the challenge of selecting features based on maximizing mutual information (MI) and conditional mutual information (CMI). Calculating the optimal feature set for maximum MI and CMI remains computationally intractable for large datasets on classical computers, even with approximation methods. This study employs a Mutual Information Quadratic Unconstrained Binary Optimization (MIQUBO) formulation, enabling its solution on a quantum annealer. Importantly, the study demonstrates the relevance of this approach in identifying the best feature combinations that maximize the MI and CMI. To showcase its real-world applicability, we apply MIQUBO to forecasting the price of used excavators. Our results demonstrate that using the MIQUBO approach leads to an improvement in the prediction of machine learning models for datasets, with a smaller MI concentration on a subset of all features.
Author(s)
Pranjic, Daniel
Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO  
Mummaneni, Bharadwaj Chowdary
Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO  
Tutschku, Christian Klaus
Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO  
Journal
Neurocomputing  
Project(s)
AutoQML - Developer-Suite für automatisiertes maschinelles Lernen mit Quantencomputern  
Funder
Bundesministerium für Wirtschaft und Klimaschutz  
Conference
European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning 2025  
Open Access
File(s)
Download (1.77 MB)
Rights
CC BY 4.0: Creative Commons Attribution
DOI
10.1016/j.neucom.2025.131673
10.24406/publica-5885
Additional link
Full text
Language
English
Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO  
Keyword(s)
  • Quantum annealing

  • Mutual information

  • Feature selection

  • Quadratic unconstrained binary optimization

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024