• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Training robust and generalizable quantum models
 
  • Details
  • Full
Options
December 27, 2024
Journal Article
Title

Training robust and generalizable quantum models

Abstract
Adversarial robustness and generalization are both crucial properties of reliable machine learning models. In this paper, we study these properties in the context of quantum machine learning based on Lipschitz bounds. We derive parameter-dependent Lipschitz bounds for quantum models with trainable encoding, showing that the norm of the data encoding has a crucial impact on the robustness against data perturbations. Further, we derive a bound on the generalization error which explicitly involves the parameters of the data encoding. Based on these theoretical results, we propose a practical strategy for training robust and generalizable quantum models by regularizing the Lipschitz bound in the cost. Moreover, we show that, for fixed and nontrainable encodings, as those frequently employed in quantum machine learning, the Lipschitz bound cannot be influenced by tuning the parameters. Thus trainable encodings are crucial for systematically adapting robustness and generalization during training. The practical implications of our theoretical findings are illustrated with numerical results.
Author(s)
Berberich, Julian
Univ. Stuttgart, Institut für Systemtheorie und Regelungstechnik -IST-
Fink, Daniel
Univ. Stuttgart, Institut für Computerphysik -ICP-  
Pranjic, Daniel
Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO  
Tutschku, Christian Klaus
Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO  
Holm, Christian
Univ. Stuttgart, Institut für Computerphysik -ICP-  
Journal
Physical review research  
Project(s)
Daten-integrierte Simulationswissenschaft (SimTech)  
AutoQML - Developer-Suite für automatisiertes maschinelles Lernen mit Quantencomputern  
Funder
Deutsche Forschungsgemeinschaft -DFG-, Bonn  
Bundesministerium für Wirtschaft und Klimaschutz  
Open Access
File(s)
Download (958.21 KB)
Rights
CC BY 4.0: Creative Commons Attribution
DOI
10.1103/PhysRevResearch.6.043326
10.24406/publica-5874
Additional link
Full text
Language
English
Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024