• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. PM3-KIE: A Probabilistic Multi-Task Meta-Model for Document Key Information Extraction
 
  • Details
  • Full
Options
July 2025
Conference Paper
Title

PM3-KIE: A Probabilistic Multi-Task Meta-Model for Document Key Information Extraction

Abstract
Key Information Extraction (KIE) from visually rich documents is commonly approached as either fine-grained token classification or coarse-grained entity extraction. While token-level models capture spatial and visual cues, entity-level models better represent logical dependencies and align with real-world use cases.We introduce PM3-KIE, a probabilistic multi-task meta-model that incorporates both fine-grained and coarse-grained models. It serves as a lightweight reasoning layer that jointly predicts entities and all appearances in a document. PM3-KIE incorporates domain-specific schema constraints to enforce logical consistency and integrates large language models for semantic validation, thereby reducing extraction errors.Experiments on two public datasets, DeepForm and FARA, show that PM3-KIE outperforms three state-of-the-art models and a stacked ensemble, achieving a statistically significant 2% improvement in F1 score.
Author(s)
Kirsch, Birgit  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Allende-Cid, Héctor  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Rüping, Stefan  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Mainwork
Findings of the Association for Computational Linguistics. ACL 2025  
Project(s)
The Lamarr Institute for Machine Learning and Artificial Intelligence  
ZERTIFIZIERTE KI
Funder
Bundesministerium für Bildung und Forschung -BMBF-  
Ministerium für Wirtschaft, Industrie, Klimaschutz und Energie des Landes Nordrhein-Westfalen MWIDEZKI
Conference
Association for Computational Linguistics (ACL Annual Meeting) 2025  
Open Access
File(s)
Download (495.18 KB)
Rights
Use according to copyright law
DOI
10.18653/v1/2025.findings-acl.1075
10.24406/publica-5779
Additional link
Full text
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Keyword(s)
  • Information Extraction

  • Probabilistic multi-task meta-model

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024