• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Black plastic identification by hyperspectral imaging in mid-wave infrared
 
  • Details
  • Full
Options
2026
Journal Article
Title

Black plastic identification by hyperspectral imaging in mid-wave infrared

Abstract
Sensor-based sorters operating in the Near-Infrared (NIR) range are commonly used to sort post-consumer plastics. However, this method fails, when the NIR light is fully absorbed by carbon black pigments, which are present in black plastics. Mid-Wave Infrared (MWIR) is less absorbed by carbon black and therefore provides a promising alternative wavelength range for analyzing black polymers. This study compares MWIR to NIR hyperspectral imaging for classifying black and colored plastic waste. We collected spectral data from five common polymers found in post-consumer packaging, namely High-Density Polyethylene (HDPE), Low-Density Polyethylene (LDPE), Polyethylene Terephthalate (PET), Polypropylene (PP), and Polystyrene (PS). We classified the spectra using several chemometric methods, including a convolutional neural network (CNN). The results quantitatively verify the superior performance of MWIR over NIR for classifying black plastics. MWIR achieved a balanced accuracy of compared to for NIR, when using a CNN, which outperformed other chemometric methods for all sensors and sample sets. On the other hand, NIR surpasses MWIR by 7 percentage points for colored plastics in balanced accuracy. These findings suggest that MWIR hyperspectral imaging is an effective alternative to NIR hyperspectral imaging for sorting post-consumer packaging waste, especially when the share of black plastics is high.
Author(s)
Roming, Lukas  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Kronenwett, Felix  orcid-logo
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Bäcker, Paul
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Josekutty, Jerardh
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Maier, Georg  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Längle, Thomas  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Journal
Waste management  
Open Access
File(s)
Download (4.18 MB)
Rights
CC BY 4.0: Creative Commons Attribution
DOI
10.1016/j.wasman.2025.115175
10.24406/publica-5722
Additional link
Full text
Language
English
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Keyword(s)
  • Black plastics

  • Plastic recycling

  • Polymer identification

  • Hyperspectral imaging

  • Mid-wave infrared

  • Near-infrared

  • Convolutional neural networks

  • Machine learning

  • Waste sorting

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024